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Nonlinear Schrödinger Equations

Nonlinear partial differential equations:

i∂tψ = −
1

2
∆ψ + Vext(x)ψ + f(|ψ|2)ψ,

where ψ = ψ(t, x) ∈ C for x ∈ Rd and t ≥ 0. Moreover, Vext models external

potential forces.

NLS equations are a generic description of nonlinear waves propagating in a

dispersive medium, describing a large number of physical phenomena in:

nonlinear optics (laser beams in fibres),

quantum superfluids (Bose-Einstein condensates),

plasma physics,

water waves

superconductivity.
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and the nonlinear term describes particle interactions.
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Two prominent examples

Example 1: The repulsive Schrödinger-Poisson system in d = 3:

i∂tψ = −
1

2
∆ψ + Vext(x)ψ +

( 1

4π|x|
∗ |ψ|2

)

ψ

describing the self-consistent transport of electrons in semiconductors.

In this case Vext is periodic and models the

crystalline lattice-structure of the ions, i.e.

V (x + L) = V (x), L ∈ Γ $ Z
d
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Example 2:

The celebrated Gross- Pitaevskii equation (GP):

i∂tψ = −
1

2
∆ψ + Vext(x)ψ + g|ψ|2ψ, g ∈ R.

It describes the superfluid dynamics of Bose-Einstein condensates (BECs) in the

mean-field limit.

BECs are ultra-cold gases of N # 103 − 106 bosonic atoms (Rb, He,...) confined

by laser traps. In this case

Vext =
|x|2

2
,

modelling the electromagnetic trap needed in experiments and g > 0 (resp.

g < 0) in the case of repulsive (resp. attractive) interactions.

Applied Partial Differential Equations – p.6/59
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Source: Group of W. Ketterle and D. Pritchard, MIT.
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Basic Mathematical Questions

Existence of solutions and/or possible finite-time blow-up, i.e. in the focusing

case g < 0,

∃ T < ∞ : lim
t→T

‖∇ψ(t)‖L2 = ∞,

where T depends on the initial data. Notice that the total mass is preserved, i.e.

‖ψ(t)‖L2 = ‖ψ(0)‖L2 ∀ t > 0.

Other mathematical questions:

soliton dynamics,

scattering of solutions,

long-time asymptotics, ...

Applied Partial Differential Equations – p.8/59
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In the context of BECs blow-up indicates that new physical effects (three-body

recombination) have to be taken into account. They can be described by a

dissipative nonlinearity

i∂tψ = −
1

2
∆ψ + Vext(x)ψ + g|ψ|2ψ − iσ|ψ|4ψ, g ∈ R, σ > 0.

Mathematical difficulties:

quintic nonlinearity is energy-critical;

no Hamiltonian structure.

Uniform bounds on ‖∇ψ‖L∞

t L2
x
and ‖ψ‖L10

t,x
can be obtained from a-priori

estimates on suitable energy-type functionals.

E(t) :=

∫

R3

1

2
|∇ψ|2 + Vext|ψ|

2 +
g

2
|ψ|4 + c|ψ|6dx, where c = c(σ) > 0.

Applied Partial Differential Equations – p.9/59
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Multiscale analysis of NLS

Free Schrödinger equation:

iε∂tψ −
ε2

2
∆ψ = 0, ψ(0, x) = eik·x/ε.

Then,

ψ(t, x) = ei(k·x/ε−|k|2t/2ε),

and hence O(ε) oscillations are propagating in space-time. More generally, the

asymptotic behaviour of

iε∂tψ = −
ε2

2
∆ψ + V ε

extψ + gf(|ψ|2)ψ,

poses highly non-trivial multiscale problem even in the linear case g = 0. In

particular, when

V ε
ext(x) = V1(x) + V2(x/ε), (slow-fast coupling).

Applied Partial Differential Equations – p.10/59
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Physical applications:

electron dynamics in crystals,

BEC in optical lattices,...

Different analytic approaches in the linear and nonlinear case:

Wigner measures (Bechouche, Gérard, Markowich, Mauser, Poupaud,....)

double-scale convergence (Allaire ’05)

space adiabatic perturbation theory (Panati, Spohn, Teufel ’02)

(two-scale) WKB-expansion (Carles, Markowich, Sparber ’04)

In the nonlinear case, only short-time results so far (caustics). For multi-scale

potentials, only weak nonlinearities can be treated so far gε = ±ε.

Applied Partial Differential Equations – p.11/59
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Numerical challenges due to high fre-

quency oscillations:

Finite-difference schemes require mesh size∆x = o(1) and ∆t = o(1)

(Markowich, Pietra, Pohl ’00).

Time-splitting schemes much better behaved (Bao, Jin, Markowich ’01)

Extension to the case of periodic potentials Vext(x/ε + L/ε) = V (x/ε)

(Huang, Jin, Markowich, Sparber ’07):

The basic idea is to split the NLS into

(Step 1) iε∂tψ = −
ε2

2
∆ψ + Vext(x/ε)ψ,

which can be solved exactly via Bloch decomposition, and a simple ODE

(Step 2) iε∂tψ = gf(|ψ|2)ψ.

Applied Partial Differential Equations – p.12/59
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To this end, one first needs to solve Bloch’s eigenvalue problem (numerical

pre-processing)

(i∂y + k)2ϕn + Vext(y)ϕn = λnϕn,

subject to periodic boundary conditions. This yields the energy-eigenvalues

λn ∈ R and Bloch-eigenfunctions ϕn required in Step 1.

Figure: Computation of lattice BEC in 3D: |ψ(t)|2x3=0 for λ = −1.
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Free Boundary Problems

∆u = 1

free boundary
!!"

PDEs is considered in domains with partially unknown (free) boundaries
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Free Boundary Problems

∆u = 1

u = ∇u = 0

PDEs is considered in domains with partially unknown (free) boundaries

Extra boundary condition on the unknown part of the boundary
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Free Boundary Problems

∆u = 1

u = ∇u = 0

PDEs is considered in domains with partially unknown (free) boundaries

Extra boundary condition on the unknown part of the boundary

Suitable for modelling of phenomena in physics (superconductivity,

solidification), finance (price formation, American put option), biology

(tumour growth), chemistry (chemical vapour deposition)...

Applied Partial Differential Equations – p.15/59

∆u = 1

u = ∇u = 0
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Superconductivity Modelling:

Conduction of electricity without resistance
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Superconductivity Modelling:

Conduction of electricity without resistance

The magnet is levitating above

the superconductor (black

disk), cooled below the critical

temperature by liquid nitrogen.

(Meissner Effect, 1933)
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Superconductivity Modelling:

Conduction of electricity without resistance

The magnet is levitating above

the superconductor (black

disk), cooled below the critical

temperature by liquid nitrogen.

(Meissner Effect, 1933)

Idea behind maglev trains and

used in flywheel applications

for energy storage.
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Vortex Flux Lattice (500x500 Nm)

Vortex flux lattice in V3Si at H=3 T and T=2.3 K. The peaks indicate the location

of a vortex with a single flux quantum of magnetic flux.

The materials enter mixed mode, when vortices penetrate the

superconductor

The number of vortices is large

Applied Partial Differential Equations – p.18/59
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Mean Field Model

Ginzburg-Landau functional of superconductivity:

G(ψ, A) =
1

2

∫

Ω

∣

∣

∣

∣

(

1

κ
∇− iA

)

ψ

∣

∣

∣

∣

2

+
1

2

(

1 − |ψ|2
)2

+ (curlA)2dx

where:

ψ is a quantum mechanical order parameter

A is the magnetic vector potential

Individual vortices are averaged into vortex density (vorticity)

Study the properties of vorticity regions such as regularity, geometry, etc...

Beresticky, Bonnet, Chapman

Applied Partial Differential Equations – p.19/59
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Magneto-Optical Imaging of Mesoscopic

Dendritic Vortex Instability

Mathematical problems: free boundaries, fractal geometries, regularity
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The Free Boundary Problem

FBP with a non-linear operator in the divergence form:







div (F (|∇u|2)∇u) = uχΩ in a domain D ⊂ Rn, Ω = {|∇u| > 0}

u ≥ 0 in D.

F (s) is a nonlinear continuous nondecreasing function

χ(E) is the characteristic function of a set E

∂Ω is the free boundary

Optimal regularity of the solutions

Classification of Global Solutions

Regularity and geometric properties of the Free Boundary

Matevosyan, Petrosyan

Applied Partial Differential Equations – p.21/59
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Reaction-Diffusion Systems

Population dynamics: predator-prey systems

Applied Partial Differential Equations – p.24/59
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Reaction-Diffusion Systems

Pattern formation: Turing instability, Activator-Inhibitor systems
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Reaction-Diffusion Systems

We consider the large time behaviour of systems of reaction-diffusion equations

Ut = div(D(x, t, U)∇U) + F (x, t, U), U ∈ R
N , x ∈ Ω.

and its linearisation around an equilibrium state U∞(x)

Vt = div(D(x, t, U∞)∇V + DU (x, t, U∞)V ∇U∞) + R(x, t, U∞)V,

with Ω ⊂ Rd bounded (with zero flux boundary condition) or the whole space.

For the large time behaviour one expects the conservation laws to compensate the

corresponding degeneracy in the reaction matrix R.

Di Francesco, Fellner, Markowich - Proc. Royal Soc. A 2008
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Reaction-Diffusion Systems

The entropy approach

exploits an entropy (Lyapunov, free-energy,. . . ) functional which dissipates

monotonically in time.

requires the conservation laws to identify an equilibrium state from the set

of entropy minimising states.

establishes a quantitative entropy entropy-dissipation inequality entailing

a) convergence in entropy to an entropy minimising equilibrium state

b) convergence in L1 using Cziszár-Kullback-Pinsker type inequalities

(cf. Otto, Carrillo et al., Markowich et al.)

yields explicitly computable rates and constants of convergence.

does not require any linearisation, smallness assumptions, . . .

Arnold, Markowich, Toscani, Unterreiter 2000 – 2001

Applied Partial Differential Equations – p.27/59
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Reaction diffusion systems

An example from semiconductor device modelling







nt = div Jn − R(n, p) , Jn := ∇n + n∇Vn

pt = − div Jp − R(n, p) , Jp := −(∇p + p∇Vp)

where n and p model two densities of charged particles subject to diffusion, to

potentials Vn and Vp and to a recombination–generation mechanism

R(n, p) = F (n, p, x)(np − e−Vn−Vp) (Shockley–Read–Hall).

Applied Partial Differential Equations – p.28/59
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Coupled chemotaxis-fluid system

Classical Keller-Segel system

elliptic-parabolic Keller-Segel system:







−n = ∆c

∂tn + ∇ · (n∇c −∇n) = 0

Global existence vs. blow-up:

Let (1 + log n(t = 0) + |x|2)n(t = 0) ∈ L1(R2),M =
∫

n(t = 0) dx. Then

M < 8π ⇒ global existence

M > 8π ⇒ finite time blow-up

Proof based on the logarithmic Hardy-Littlewood-Sobolev inequality

A. Blanchet, J. Dolbeault, B. Perthame, EJDE, 2005
. – p.1/??

Sonntag, 24. März 13



Coupled chemotaxis-fluid system

Motivation

movie courtesy of Goldstein Lab
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Coupled chemotaxis-fluid system

Flow pattern

Applied Partial Differential Equations – p.38/59

Coupled chemotaxis-fluid system

Equations

chemotaxis







ct + u ·∇c = Dc∆c − nκf(c)

nt + u ·∇n = Dn∆n − χ∇ · [r(c)n∇c]

incompressible NS







ρ(ut + u ·∇u) = −∇p + η∆u − n∇ϕ

∇ · u = 0.

where n = n(x, t) ≥ 0: bacteria density

c = c(x, t) ≥ 0: oxygen concentration

u = u(x, t) ∈ R
3: fluid velocity

p = p(x, t): pressure, ρ: (constant) fluid density

f and r smooth, nondecreasing.
Applied Partial Differential Equations – p.39/59
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Coupled chemotaxis-fluid system

A combination of effects



























ct + u ·∇c = Dc∆c − nκf(c)

nt + u ·∇n = Dn∆n − χ∇ · [r(c)n∇c]

ρ(ut + u ·∇u) = −∇p + η∆u − n∇ϕ

∇ · u = 0.

The bacteria n diffuse with a constant diffusivityDn > 0, are subject to fluid

convection and are directed up to the gradient of the oxygen concentration in the

chemotaxis term −χ∇ · [r(c)n∇c]. The chemotactic sensitivity is given by r(c).

They are subject to pure transport (no reaction, i. e. no birth–death processes).

The oxygen concentration c is diffused with diffusivityDc and subject to fluid

convection. It reacts with the bacteria via the loss term −nκf(c).

The fluid velocity u obeys the incompressible viscous Navier–Stokes equations

with a source term modelling gravity. ϕ models a gravitation potential.

. – p.2/??
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Coupled chemotaxis-fluid system

What can we do?


























ct + u ·∇c = Dc∆c − nκf(c)

nt + u ·∇n = Dn∆n − χ∇ · [r(c)n∇c]

ρut = −∇p + η∆u − n∇ϕ

∇ · u = 0.

Domain: Ω ⊂ Rd, d = 2, 3 either bounded (with smooth boundary) or the whole

space.

Stokes’ approximation: we drop the nonlinear transport term u ·∇u (justified

for ‘small’ u)

Boundary conditions: ∂c
∂ν

∣

∣

∂Ω×[0,T ]
= ∂n

∂ν

∣

∣

∂Ω×[0,T ]
= 0 and u|∂Ω×[0,T ] = 0

Questions in analogy to classical Keller-Segel: do bacteria densities

concentrate to singular measures (in finite or infinite time)? Or is it rather

possible to prove their global boundedness? (cf. Jäger, Luckhaus, Herrero,

Velazquez, Dolbeault, Perthame, Blanchet ...)
. – p.2/5
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Coupled chemotaxis-fluid system

Local Existence

The above key question can be addressed with suitable local and global existence

theorems. As a first basic step we can prove:

For Ω ⊂ R2, R3, there exists T > 0 such that the system has a weak solution

(c, n, u).

Global Existence for c0 small

Ω = R3, assumptions on f , ϕ > 0 and initial data. Then there exists a c∗

depending only onDn, Dc, η, ϕ, f, χ s.t. for |c0|∞ ≤ c∗, there is a

global-in-time weak solution.

E(t) :=

∫

R3

n(ln n + λϕ)dx + λ(‖c‖2
H1 + ‖u‖2

2)

A. Lorz, M3AS, 2010

R.-J. Duan, A. Lorz, P. A. Markowich, CPDE, 2010
. – p.4/6
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Coupled chemotaxis-fluid system

Global Existence without smallness assumptions

In Ω = R2, under the assumptions on χ(c) and f(c), d2

dc2

(

f(c)
χ(c)

)

< 0,

χ′(c)f(c) + χ(c)f ′(c) > 0, the system has a global-in-time solution.

Nonlinear Diffusion in n

Replacing ∆n by∆nm: With weak assumptions, Ω bounded and 1.5 < m ≤ 2,

we obtain a global-in-time solution.

J.-G. Liu, A. Lorz, Ann. IHP, 2011

M. Di Francesco, A. Lorz, P. A. Markowich, DCDS, 2010

. – p.4/5
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Coupled chemotaxis-fluid system

Numerics: From falling plumes to a stationary state
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Socio-Economics: Price Formation

Consider a market

Fixed number of goods to be

traded

Fixed number of buyers/vendors

Question: How does the price of

the good evolve in time?

Assumption: Buyers/vendors do

not take every single interaction

into account, but make their

decision based on the overall

market outlook

There is a fixed fee for every

transaction
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Price formation: J.-M. Larsy and P.-L. Li-

ons

The state of each player satisfies the stochastic differential equation

dXi
t = σdWt + αidt, Xi

0 = xi, i = 1, . . .N

whereW i
t denote independent Brownian motions. Each agent tries to find the

optimal strategy α such that his/her costs

E

[

∫ T

0
L(Xi, α) + F (X1, . . . , XN)dt

]

are minimal. Nash equilibrium and a mean-field limit (N → ∞) give the

Hamilton-Jacobi-Bellman equation

∂u

∂t
− ν∆u + H(x,∇u) = V (x, m), u(x, 0) = V0(x, m(x, 0))

∂m

∂t
+ ν∆m + div

(

∂H

∂p
(x,∇u)m

)

= 0, m(x, T ) = m0
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Price formation - free boundary problem

The signed density of buyers/vendors is denoted by f , the price p(t) is the free
boundary given by f(p(t)) = 0 and λ(t) = −f(p(t), t)x defines the transaction
rate.

∂f

∂t
−

σ2

2

∂2f

∂x2
= λ(t)(δ(x − p(t) + a) − δ(x − p(t) − a))

f(x, t) > 0 if x < p(t), f(x, t) < 0 if x > p(t).
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Price formation - free boundary problem

References:

L.A. Caffarelli, P.A. Markowich, M.-T. Wolfram, On a price formation free
boundary value model of Lasry & Lions: The Neumann Problem, C. R.
Acad. Sci. Paris, 349, 841-844,2011

L.A. Caffarelli, P.A. Markowich, J.-F. Pietschmann, On a price formation
free boundary value model of Lasry & Lions, C. R. Acad. Sci. Paris, 349,
621-624,2011

P.A. Markowich, N. Matevosyan, J.-F. Pietschmann, M.-T. Wolfram, On a
parabolic free boundary equation modeling price formation, M3AS, 11(19),
1929-1957,2009
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Setup
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FBP ! Heat Equation (I)
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FBP ! Heat Equation (I)
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FBP ! Heat Equation (I)
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FBP ! Heat Equation (II)

• Apply construction to positive and negative part, i.e.

F (x , t) =

⇢ P1
n=0 f

+(x + na, t), x < p(t),
�

P1
n=0 f

�(x � na, t), x > p(t).

) Then, F fulfils, in the sense of distributions

@F

@t
=

@2F

@x2
, x 2 R, t > 0,

with initial datum

FI (x) =

⇢ P1
n=0 f

+
I (x + na), x < p0,

�
P1

n=0 f
�
I (x � na), x > p0,

The free boundary p = p(t) is the zero-level set of the solution F of the heat
equation.

10 / 37
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Socio-Economics: Opinion Formation

Spread of a opinion in a society

Question: How does the opinion

evolve in time?

Assumption: Opinion formation

is determined by binary interac-

tions with other people

Applied Partial Differential Equations – p.49/59
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Opinion Formation: G. Toscani

The change of opinion is defined by collisional events

Time evolution of the distribution of opinion satisfies a Boltzmann equation

Applied Partial Differential Equations – p.50/59
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Understanding Carinthia

Grüne SPÖ ÖVP FPÖ BZÖ

2004 6.7% 38.4 % 11.6 % 42.5 % —

2009 5.2% 28.8 % 16.8 % 3.8 % 44.9 %

Extreme opinions v = ±1 correspond to right/left wing of the political
spectrum.

Place parties according to their political views with weight that correspond
to the results of the 2004 elections.
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Understanding Carinthia

−1 −0.5 0 0.5 1
0

500

1000

0

5

10

15

opinion
time −1 −0.5 0 0.5 1

0

500

1000

0

10

20

30

opinion
time

−1 −0.5 0 0.5 1
0

5

10

15

20

opinion
−1 −0.5 0 0.5 1
0

10

20

30

40

opinion

Applied Partial Differential Equations – p.3/3

Sonntag, 24. März 13



Sonntag, 24. März 13



Thank You For Your Attention!
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