On the critical $p-$Laplace equation
The starting point of the seminar is the well-known generalized Lane-Emden equation
\begin{equation}
\Delta_p u + \vert u \vert^{q-1} u =0 \quad \text{ in $\mathbb{R}^n$ } \, , \quad \quad \text{(LE)}
\end{equation}
where $\Delta_p$ is the usual $p-$Laplace operator with $ 1 < p < n $ and $ q > 1 $. I will discuss several non-existence and classification results for positive solutions of (LE) in the subcritical ($q < p^\ast - 1 $) and in the critical case ($q = p^\ast - 1 $). In the critical case, it has been recently shown, exploiting the moving planes method, that positive solutions to the critical $ p-$ Laplace equation (i.e. (LE) with $ q = p^\ast -1 $) and with finite energy, i.e. such that $ u \in L^{p^\ast}(\mathbb{R}^n) $ and $ \nabla u \in L^p(\mathbb{R}^n) $, can be completely classified. In this talk, I will present some recent classification results for positive solutions to the critical $p-$Laplace equation with (possibly) infinite energy satisfying suitable conditions at infinity. Moreover, if time permits I will discuss analogous results in the anisotropic, conical and Riemannian settings.
This is based on a recent joint work with G. Catino and D. Monticelli.