Home  /  Ricerca  / Eventi
12 Giugno, 2019 15:15
Sezione di Analisi

Symmetry preservation for fourth order eigenvalue optimization problems

Francesca Colasuonno, Università degli Studi di Torino
Aula seminari 3° piano
Abstract

In this talk, we will discuss some recent results on two eigenvalue optimization problems governed by the biharmonic operator, under Dirichlet or Navier boundary conditions. From a physical point of view, in two dimensions our problem corresponds to building a plate, of prescribed shape and mass, out of materials with different densities --varying in a certain range of values-- in such a way to minimize the lowest frequency of the body. This problem is also referred to as composite plate problem. Both for the clamped plate (i.e., Dirichlet b.c.) and for the hinged plate (i.e., Navier b.c.), we will prove the existence of an optimal configuration and give an explicit representation of the minimizing densities in terms of sublevel sets of their corresponding first eigenfunctions. Finally, we will discuss symmetry preservation properties of the optimal configurations, in the presence of some symmetry and convexity of the domain. The tools used differ depending on the boundary conditions: while the hinged plate problem inherits the maximum principles for second order elliptic systems, allowing us to exploit the moving plane method to get symmetry preservation in more general domains, the situation is more complicated for the clamped plate problem, where we will use the polarization technique and the properties of the Green's function to deal with radial symmetry preservation in a ball.
This talk is based on two joint papers with Eugenio Vecchi (Trento).

Cerca per sezione
Stringa di ricerca Reset

Seminari Matematici
a Milano e dintorni