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Abstract

In this paper we study the efficiency and the reliability of an anisotropic a
posteriori error estimator in the case of the Poisson problem supplied with mixed
boundary conditions. The error estimator may be classified as a residual-based
one, but its novelty is twofold: firstly, it employs anisotropic estimates of the
interpolation error for linear triangular finite elements and, secondly, it makes use
of the Zienkiewicz-Zhu recovery procedure to approximate the gradient of the exact
solution. Finally, we describe the adaptive procedure used to obtain a numerical
solution satisfying a given accuracy, and we include some numerical test cases to
assess the robustness of the proposed numerical algorithm.

1 Introduction and motivations

In [27, 31] an error estimator computationally cheap but, at the same time, able to detect
the directional features of the solution of the problem at hand is introduced. These
good properties are obtained by suitably combining the Zienkiewicz-Zhu (ZZ) gradient
recovery procedure [40, 41, 42, 43] with the anisotropic error estimates of [11, 12]. This
is carried out first by developing a residual-based error estimator. Then the error in
the interpolation terms is bounded via suitable anisotropic error estimates. Finally,
the derivatives of the exact solution entering these anisotropic terms are replaced by
recovered quantities, in the spirit of the ZZ procedure.

Let us show in more detail how this error estimator is obtained in a quite general
setting. Suppose that the weak form of the problem at hand is:
find u ∈ V such that, for any v ∈ V ,

B(u, v) = L(v), (1)

where V is a Hilbert space, B(·, ·) : V × V → R is a coercive symmetric bilinear form,
L : V → R is an element of the dual space V ′ of V . Then the approximated problem is:
find uh ∈ Vh such that, for any vh ∈ Vh,

B(uh, vh) = L(vh),
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where Vh ⊂ V is a suitable finite dimensional subspace of V . Then it follows that, for
any v ∈ V ,

B(u − uh, v) = L(v) − B(uh, v) = R(v),

R ∈ V ′ being the (weak) residual associated with (1). The well-known Galerkin orthog-
onality property (R(vh) = 0, for any vh ∈ Vh), yields

B(u − uh, v) = R(v − vh).

By localizing the residual term over the elements K and the edges of the triangulation
Th, and using the Cauchy-Schwarz inequality as well as suitable interpolation error
estimates, we have

|B(u − uh, v)| ≤ C
∑

K∈Th

αK ρK(uh) wK(v), (2)

where αK are area-dependent coefficients, while ρK(uh) and wK(v) are the local (interior
and edge) residual terms and the anisotropic weights associated with the function v,
respectively, with C a suitable constant. By identifying in (2) v with the discretization
error eh = u − uh, we get

B(eh, eh) ≤ C
∑

K∈Th

αK ρK(uh) wK(eh). (3)

We may characterize such a result as an implicit estimate for the energy norm of eh,
since eh appears at both the left and right-hand sides of (3), the energy norm being
defined by the bilinear form itself. The idea now is to replace the above term wK(eh),
usually depending on the first and/or the second derivatives of eh, with the computable
quantity wK(e∗h), obtained by employing, for instance, recovered derivatives of u instead
of the exact ones, following the ZZ approach. Thus the final estimator for the energy
norm of eh is defined by

η =
( ∑

K∈Th

η2
K

)1/2

, (4)

with ηK =
(
αKρK(uh)wK(e∗h)

)1/2
.

Since the pioneering work [40] dealing with the linear elastic problem, and some fur-
ther papers [42, 43], it has been attempted to theoretically understand the amazingly
good properties of the ZZ error estimator, obtained by approximating the true gradient,
for instance, with the recovered one. One of the first work in which some averaging tech-
nique is studied is [20], though the idea is nearly as old as the finite element method itself
(see, e.g., [39]). In the literature emphasis is often given to superconvergence results,
that is, the phenomenon observed when using, for example, continuous piecewise linear
finite elements: the convergence rate of the averaged gradient to the exact gradient in
the L2-norm can locally be higher, even by one order, than that of the original piecewise
constant discrete gradient, under some smoothness assumption on the solution and on
the domain, and under some regularity constraints on the mesh. For instance, in [20]
uniform triangulations are necessary; in [21] a regular family of uniform triangulations
of a polygonal domain is considered; in [10] a quasi-parallelism assumption is made; in
[24] generalizations of previous results assuming fully-structured partitions or strongly-
regular meshes to globally mildly structured meshes are derived. Theoretical properties
of different types of ZZ-like error estimators are considered also in e.g. [3, 5, 23, 37, 38].
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Aim of this paper is to study the efficiency and the reliability of an anisotropic a
posteriori error estimator of the type (4), in the case of the Poisson problem provided
with mixed boundary conditions.
Some numerical tests on anisotropic error estimators of type (4) have already been
presented in [27, 31] while generalization to other elliptic problems and to parabolic
problems are discussed in [32].

The outline of the paper is as follows: after introducing the anisotropic setting
in Section 2, we derive in Section 3 the anisotropic error estimator of type (4) for a
model elliptic boundary value problem. In Section 4 we provide the theoretical tools for
studying the reliability and the efficiency of the error estimator, carried out in Section 5
and 6, respectively. Finally, in Section 7 we discuss how the anisotropic error estimator
can be used to generate an adapted mesh and we numerically validate the proposed
theory on some test cases.

2 Functional and anisotropic framework

Let us introduce the functional spaces used in the sequel. Let Ω be a polygonal domain
of R

2
with Lipschitz continuous boundary ∂Ω. First, let L2(Ω) be the space of the

Lebesgue square-integrable functions with norm ‖ · ‖L2(Ω) and scalar product (·, ·).
Then let W k,p(Ω) be the classical Sobolev spaces of functions for which the p-th power
of their distributional derivatives of order up to k ≥ 0 is Lebesgue-measurable and
1 ≤ p < ∞ [25]. In particular, for p = 2, the space W k,2(Ω) is denoted with Hk(Ω),
with norm and seminorm ‖ · ‖Hk(Ω) and | · |Hk(Ω), respectively. When these norms or
seminorms are referred to some subset S of Ω, they are written as ‖ · ‖L2(S), ‖ · ‖Hk(S)

and | · |Hk(S).
Moreover, in the case p = 2 and k = 1 we let H1

Γ(Ω) be the subspace of functions
of H1(Ω) satisfying homogeneous Dirichlet boundary conditions on a subset Γ of the
boundary ∂Ω of Ω, with Γ 6= ∅. Finally, we recall that L∞(Ω) is the space of bounded
functions a.e. in Ω.
The remaining part of this section is devoted to the introduction of the anisotropic
setting used to derive the anisotropic a posteriori error estimator in Section 3.1. The
details of the anisotropic analysis we are referring to are covered essentially in [11, 12].

For any 0 < h ≤ 1, let {Th}h be a family of conforming triangulations of Ω into tri-
angles K of diameter hK ≤ h. Since we are working with strongly anisotropic meshes,
the standard regularity assumption on the mesh does not hold [7]. Let us introduce

the standard invertible affine map TK : K̂ → K from the reference triangle K̂ to the
general element K of the triangulation Th (see Fig. 1). Although the results in [11, 12]

are independent of K̂, in the sequel, we identify K̂ with the unitary equilateral trian-
gle (−1/2, 0), (1/2, 0), (0,

√
3/2). This turns out to be a practical and rather standard

choice for an anisotropic analysis [2, 9, 18, 22, 35].
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Figure 1: The affine map TK .

For any K ∈ Th, let MK ∈ R
2×2

and ~tK ∈ R
2

be the matrix and the vector defining

the map TK , that is, for any ~̂x = (x̂1, x̂2)
T ∈ K̂,

~x = (x1, x2)
T = TK(~̂x) = MK

~̂x + ~tK ∈ K . (5)

The anisotropic information about the size and the orientation of the mesh element K
are derived by the spectral properties of the map TK . In more detail, let us consider the
polar decomposition MK = BK ZK of the matrix MK in (5), with BK and ZK ∈ R

2×2

symmetric positive definite and orthogonal matrices, respectively (see, e.g., [17]). Then
let us factorize the matrix BK in terms of its eigenvalues λi,K and eigenvectors ~ri,K to
obtain MK = RT

K ΛK RK ZK , with RT
K = [~r1,K ~r2,K ] and ΛK = diag(λ1,K , λ2,K). In

the sequel the non-restrictive assumption λ1,K ≥ λ2,K is made.

The deformation of any K ∈ Th with respect to K̂ can thus be measured in terms of
the quantities λi,K by defining the so-called stretching factor sK = λ1,K/λ2,K (≥ 1), s �

K
being equal to one. Notice that the matrix BK and all the quantities related to it are
independent of the local numbering of the nodes of K only when K̂ is the (isotropic)
equilateral triangle.

In view of the a posteriori error analysis below, after introducing the finite element
space Wh ⊂ H1(Ω) consisting of piecewise continuous polynomials of degree one, let
I1
h : L2(Ω) → Wh be the standard Clément linear interpolant [8], and let I1

K be its
restriction to K, for any K ∈ Th. Throughout two requirements are made on the
patch ∆K involved in the definition of the operator I1

h, ∆K being the union of all the
elements sharing a vertex with K. We assume the cardinality of any patch ∆K as
well as the diameter of the reference patch ∆ �

K = T−1
K (∆K) to be uniformly bounded,

independently of the geometry of the mesh, i.e., for any K ∈ Th,

card(∆K) < N and diam(∆ �

K) ≤ C∆ ' O(1), (6)

with C∆ ≥ h �

K [26]. In particular, the latter hypothesis rules out some too distorted
reference patches (see Fig. 2 where examples of acceptable and non-acceptable patches
are provided).

For the Clèment operator I1
h the following anisotropic interpolation error estimates

can be proved [11, 12].
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Figure 2: Examples of an acceptable (top) and of a non-acceptable (bottom) patch.

Lemma 2.1 Let v ∈ H1(Ω). Then there exist two constants C1 = C1(N, C∆) and
C2 = C2(N, C∆) such that, for any K ∈ Th,

‖v − I1
K(v)‖L2(K) ≤ C1

[ 2∑

i=1

λ2
i,K

(
~r T

i,K GK(v)~ri,K

)]1/2

,

‖v − I1
K(v)‖L2(∂K) ≤ C2 h

1/2
K

[
sK

(
~r T
1,K GK(v)~r1,K

)
+

1

sK

(
~r T
2,K GK(v)~r2,K

)]1/2

,

(7)
GK(v) being the symmetric positive semi-definite matrix given by

GK(v) =
∑

T∈∆K




∫

T

( ∂v

∂x1

)2

d~x

∫

T

∂v

∂x1

∂v

∂x2
d~x

∫

T

∂v

∂x1

∂v

∂x2
d~x

∫

T

( ∂v

∂x2

)2

d~x




. (8)

Remark 2.1 Estimates (7) hold also for a more general Clèment like operator such
as, for instance, the Scott-Zhang interpolant [34]. In such a case it suffices to suitably
modify the definition of the patch ∆K in (8).
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3 The model problem

Let us consider the model elliptic boundary value problem: find u : Ω → R such that




−
2∑

i, j=1

∂

∂xi

(
aij

∂u

∂xj

)
+ γu = f in Ω,

u = 0 on ΓD,

∂u

∂~nL
= g on ΓN ,

(9)

where ΓD and ΓN , with ΓD 6= ∅, denote two disjoint boundary segments such that
ΓD ∪ ΓN = ∂Ω; f ∈ L2(Ω), g ∈ L2(ΓN ), γ = γ(~x) ≥ 0 a.e. in Ω and aij = aij(~x) =
aji(~x) ∈ L∞(Ω) are given functions, and

∂u

∂~nL
=

2∑

i, j=1

aij
∂u

∂xj
ni

is the conormal derivative of u, ~n = (n1, n2)
T being the unit outward normal vector to

the boundary ∂Ω of the domain Ω. Moreover, we assume that the differential operator
defined in (9) is elliptic, i.e. that there exists a constant δ > 0 such that

2∑

i, j=1

aij(~x) ξi ξj ≥ δ ‖ ~ξ ‖2
2

for any ~ξ = (ξ1, ξ2)
T ∈ R

2
and for a.e. ~x ∈ Ω, ‖ · ‖2 denoting the standard Euclidean

norm. The weak form of (9) reads: find u ∈ V ≡ H1
ΓD

(Ω) such that

B(u, v) = L(v) for any v ∈ V, (10)

where

B(u, v) =

∫

Ω

( 2∑

i, j=1

aij
∂u

∂xj

∂v

∂xi
+ γ u v

)
d~x and L(v) =

∫

Ω

f v d~x +

∫

ΓN

g v ds.

The hypotheses made above on the data of problem (9) guarantee the existence and the
uniqueness of the solution u of the weak formulation (10). Let us endow the space V
with the energy norm ||| · ||| defined by

|||v||| = [B(v, v)]1/2 for any v ∈ V. (11)

In what follows, without any explicit specification, we will refer such a norm to the whole
domain Ω. Otherwise the considered subset of Ω will be specified by a corresponding
subscript. Let us introduce the subspace Vh ⊂ V consisting of piecewise continuous
polynomials of maximum degree one [7, 33]. Then the discrete form of (10) reads: find
uh ∈ Vh such that

B(uh, vh) = L(vh) for any vh ∈ Vh. (12)

Existence and uniqueness of uh are again guaranteed by the hypotheses made above on
the data of problem (9). Recalling that eh = u − uh is the discretization error associ-
ated with the finite element solution uh, this quantity satisfies the so-called Galerkin
orthogonality property given by

B(eh, vh) = 0 for any vh ∈ Vh. (13)

Moving from [27, 31], we are now in a position to build the desired anisotropic counter-
part of the standard ZZ error estimator [40, 41, 42, 43].
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3.1 An anisotropic recovery-based a posteriori error estimator

First, let us introduce some quantities used below. For any K ∈ Th, let

rK(uh) =
(
f +

2∑

i, j=1

∂

∂xi

(
aij

∂uh

∂xj

)
− γ uh

)∣∣∣
K

(14)

and

RK(uh) =





0 for any E ∈ E(K) ∩ Eh,D,

2
(

g − ∂uh

∂~nL,K

)∣∣∣
E

for any E ∈ E(K) ∩ Eh,N ,

−
[ ∂uh

∂~nL,K

]
E

for any E ∈ E(K) ∩ Eh,Ω

(15)

be the element interior and boundary residuals, respectively associated with the finite
element approximation uh. We have distinguished the edges E constituting the skeleton
Eh of the triangulation Th as Eh,Ω, Eh,D and Eh,N according to whether they are internal,
Dirichlet or Neumann edges, respectively, while with E(K) we let the set of the edges
of the generic triangle K. Moreover,

[ ∂uh

∂~nL,K

]
E

=
∂uh

∂~nL,K
+

∂uh

∂~nL,K′

for any E ∈ E(K) ∩ Eh,Ω,

where K ′ is the triangle sharing the edge E with K and ∂uh/∂~nL,K and ∂uh/∂~nL,K′

denote the conormal derivatives of uh associated with the elements K and K ′, respec-
tively.
First, let us prove an implicit estimate for the energy norm of the discretization error,
where implicit is understood in the sense mentioned in Section 1.

Proposition 3.1 Let u be the solution of (10) and uh be the corresponding finite ele-
ment approximation, solution of (12). Then there exists a constant C = C(N, C∆) such
that

|||eh||| ≤ C
( ∑

K∈Th

αK ρK(uh) wK(eh)
)1/2

, (16)

where

αK = λ
1/2
1,K λ

1/2
2,K ,

ρK(uh) = ‖rK(uh)‖L2(K) +
1

2 λ
1/2
2,K

‖RK(uh)‖L2(∂K),

wK(eh) =
[
sK

(
~r T
1,K GK(eh)~r1,K

)
+

1

sK

(
~r T
2,K GK(eh)~r2,K

) ]1/2

,

(17)

GK is the matrix defined in (8), and rK(uh) and RK(uh) are given by (14) and (15),
respectively.

Proof. Let us suitably rewrite the bilinear form B(eh, v): for any v ∈ V ,

B(eh, v) =
�

K∈Th

�
K �

2�
i, j=1

aij
∂eh

∂xj

∂v

∂xi
+ γ eh v � d~x

=
�

K∈Th �
�
K

f v d~x +

�
∂K∩ΓN

g v ds � −
�

K∈Th

�
K �

2�
i, j=1

aij
∂uh

∂xj

∂v

∂xi
+ γ uh v � d~x.

(18)
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An integration by parts of the integral in the last sum yields

−
�

K∈Th

�
K �

2�
i, j=1

aij
∂uh

∂xj

∂v

∂xi
+ γ uh v � d~x =

�
K∈Th �

�
K �

2�
i, j=1

∂

∂xi � aij
∂uh

∂xj
�

− γ uh � v d~x −
�

∂K∩ΓN

∂uh

∂~nL,K
v ds −

�
∂K∩Eh,Ω

∂uh

∂~nL,K
v ds � .

Thus, going back to (18) and thanks to (14) and (15), we get

B(eh, v) =
�

K∈Th �
�
K � f +

2�
i, j=1

∂

∂xi � aij
∂uh

∂xj
� − γ uh � v d~x

+

�
∂K∩ΓN � g − ∂uh

∂~nL,K
� v ds −

�
∂K∩Eh,Ω

∂uh

∂~nL,K
v ds �

=
�

K∈Th �
�
K

rK(uh) v d~x +
1

2

�
∂K

RK(uh) v ds � .

Now the Galerkin orthogonality property (13) (with vh = I1
h(v)) together with the Cauchy-

Schwarz inequality and Lemma 2.1 provide the estimate

|B(eh, v)| = ��B �
eh, v − I1

h(v) ���� ≤ �
K∈Th � ‖rK(uh)‖L2(K) ‖v − I1

K(v)‖L2(K)

+
1

2
‖RK(uh)‖L2(∂K) ‖v − I1

K(v) ‖L2(∂K) �
≤ C

�
K∈Th � ‖rK(uh)‖L2(K) � 2�

i=1

λ2
i,K

�
~r T

i,K GK(v)~ri,K ��� 1/2

+
h

1/2
K

2
‖RK(uh)‖L2(∂K) � sK

�
~r T
1,K GK(v)~r1,K � +

1

sK

�
~r T
2,K GK(v)~r2,K ��� 1/2 �

≤ C
�

K∈Th � � λ1/2
1,K λ

1/2
2,K‖rK(uh)‖L2(K) +

λ
1/2
1,K

2
‖RK(uh)‖L2(∂K) �

� sK

�
~r T
1,K GK(v)~r1,K � +

1

sK

�
~r T
2,K GK(v)~r2,K � � 1/2 � ,

i.e. result (16) after choosing v = eh. Notice that in the last inequality the geometrical relation

hE ≤ hK ≤ h �Kλ1,K , for any K ∈ Th, (19)

has been exploited also. 	
To get information from estimate (16), we replace the matrix GK(eh) in the definition of
the weights wK(eh) with a computable quantity, eh depending on the unknown solution
u. With this aim, we exploit the ZZ recovery technique and replace GK(eh) with the
new matrix GK(e∗h) defined by

(GK(e∗h))ij =
∑

T∈∆K

∫

T

(
Giuh − ∂uh

∂xi

)(
Gjuh − ∂uh

∂xj

)
d~x with i, j = 1, 2, (20)

GZZuh = (G1uh, G2uh)T ∈ (Wh)2 denoting the ZZ recovered gradient.
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Remark 3.1 Throughout we employ the following definition of GZZuh:

GZZuh(~xi) =
1

|∆i|
∑

T∈∆i

|T | ∇uh

∣∣
T
,

where ∆i is the patch of elements sharing the generic node ~xi, and |T |, |∆i| are the
measures of T and ∆i, respectively. This corresponds to an approximate L2-projection,
where the scalar product are evaluated using the trapezoidal quadrature formula.

Matrix (20) allows us to provide the definition below.

Definition 3.1 An anisotropic a posteriori error estimator for the energy norm of the
discretization error eh associated with the finite element approximation uh of problem
(10), is given by the quantity

η =
( ∑

K∈Th

η2
K

)1/2

, (21)

where ηK =
(
αK ρK(uh) wK(e∗h)

)1/2
is the element error indicator. According to (17)3,

wK(e∗h) =

[
sK

(
~r T
1,K GK(e∗h)~r1,K

)
+

1

sK

(
~r T
2,K GK(e∗h)~r2,K

) ]1/2

, (22)

while αK and ρK(uh) are defined as in (17)1 and (17)2, respectively.

We point out that the error estimator (21) is of residual type (see, e.g., [1, 36]).
However, though computationally cheap, it allows us to estimate only the energy norm
of the discretization error eh. If linear functionals of eh have to be controlled, dual-
based error estimators, involving the solution of a suitable adjoint problem, should be
considered [4, 16, 30]. Anisotropic error estimates for the control of linear functionals
of the discretization error are considered, for instance, in [12, 13, 14, 28].

4 Foreword to the analysis

Given a generic estimator η of the discretization error eh in the energy norm, checking
the robustness of η means verifying its efficiency and reliability i.e. the existence of two
strictly positive constants C, C, independent of the mesh size, such that

|||eh||| ≤ C η + H.O.T.1 (reliability) (23)

and
ηK ≤ C |||eh|||∆K

+ H.O.T.2 (efficiency), (24)

where ηK is the element error indicator associated with η and H.O.T.i, with i = 1, 2,
are higher order terms related to the data oscillations (see [29]).
Essentially, relations (23) and (24) state the upper (global) and lower (local) bounded-
ness of the energy norm of eh in terms of the global and of the element error indicators
η and ηK , respectively.
The reliability and the efficiency of the error estimator η in (21) are analyzed in Sections
5 and 6, respectively after making some simplifying choices on the starting problem (9):
the diffusive matrix A = {aij} is assumed constant, while the reaction term γu is
neglected. Thus, the element internal residual reduces to rK(uh) = f |K because of the
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choice of the finite element space.
Then we replace the data f and g, usually not exactly integrable, by suitable functions
fK and gE, piecewise constant with respect to Th and Eh,N , respectively [29, 36]. The
element error indicator ηK in (21) can thus be explicitly rewritten as

ηK,T =
[
λ

1/2
1,Kλ

1/2
2,K ‖fK‖L2(K) +

λ
1/2
1,K

2

∑

E∈E(K)∩Eh,Ω

∥∥∥
[ ∂uh

∂~nL,K

]
E

∥∥∥
L2(E)

+ λ
1/2
1,K

∑

E∈E(K)∩Eh,N

∥∥∥
(
gE − ∂uh

∂~nL,K

)∣∣∣
E

∥∥∥
L2(E)

]1/2 (
wK(e∗h)

)1/2
,

(25)

ηK,T being now an exactly computable quantity.
Finally, the reliability and the efficiency of the error indicator

ηT =
( ∑

K∈Th

η2
K,T

)1/2

(26)

will be studied under the additional

Assumption 4.1 For any K ∈ Th,

∥∥∥ ∂u

∂xi
− Giuh

∥∥∥
L2(∆K)

≤ νK

∥∥∥∂eh

∂xi

∥∥∥
L2(∆K)

for i = 1, 2, (27)

with νK ’s constants such that 0 ≤ νK < 1.

Assumption 4.1 is not so unusual in the literature. It is the main idea of the ZZ recovery
technique, i.e. that the reconstruction GZZuh of the approximation ∇uh for the gradient
∇u turns out to be better than ∇uh itself. However, we remark that assumption (27)
is stronger than what is usually assumed, that is ‖∇u − GZZu‖L2(Ω) ≤ ν‖∇eh‖L2(Ω),
with 0 ≤ ν < 1 [6, 36].

4.1 Some useful results

Let us provide some results used in the sequel to assess the reliability and the efficiency
of the error estimator (26).

Lemma 4.1 For any function v ∈ H1(∆K) and for any α, β > 0, it holds

min(α, β) ≤
α

(
~r T
1,K GK(v)~r1,K

)
+ β

(
~r T
2,K GK(v)~r2,K

)

|v|2H1(∆K)

≤ max(α, β),

GK being the matrix defined in (8).

Proof. Without loss of generality, let us assume that α ≥ β. Vice versa it suffices to
exchange in the following the roles played by ~r1,K and ~r2,K . As ~r1,K and ~r2,K are orthonormal
(eigen)vectors, let ~r1,K = [c s]T and ~r2,K = [−s c]T , with c = cos θ, s = sin θ and θ ∈ [0, π[.

10



Let W (v) be the matrix with components
�
W (v) �

i,j
= (∂v/∂xi) (∂v/∂xj), for i, j = 1, 2.

Then we have

α (~r T
1,K W (v)~r1,K) + β (~r T

2,K W (v)~r2,K)

= α � � ∂v

∂x1
� 2

c2 + 2
∂v

∂x1

∂v

∂x2
s c + � ∂v

∂x2
� 2

s2 �
+ β � � ∂v

∂x1
� 2

s2 − 2
∂v

∂x1

∂v

∂x2
s c + � ∂v

∂x2
� 2

c2 �
= � ∂v

∂x1
� 2

(α c2 + β s2) + 2
∂v

∂x1

∂v

∂x2
(α − β) s c + � ∂v

∂x2
� 2

(α s2 + β c2)

= � ∂v

∂x1

∂v

∂x2 ��� α c2 + β s2 (α − β)s c

(α − β)s c α s2 + β c2 ������ ∂v

∂x1

∂v

∂x2

	 

� .

Thus we are led to bound the last term of the chain of equalities above to obtain

β � � ∂v

∂x1
� 2

+ � ∂v

∂x2
� 2 �

≤ � ∂v

∂x1

∂v

∂x2 ��� α c2 + β s2 (α − β)s c

(α − β)s c α s2 + β c2 ������ ∂v

∂x1

∂v

∂x2

	 

�
≤ α � � ∂v

∂x1
� 2

+ � ∂v

∂x2
� 2 �

since α and β are easily shown to be the maximum and minimum eigenvalue of the matrix

above. After integrating over ∆K the thesis follows. 	
Analogously to Lemma 4.1, we have

Lemma 4.2 For any α, β > 0, we have

min(α, β) ≤
α

(
~r T
1,K GK(e∗h)~r1,K

)
+ β

(
~r T
2,K GK(e∗h)~r2,K

)

‖GZZuh −∇uh‖2
L2(∆K)

≤ max(α, β), (28)

GK(e∗h) being defined as in (20).

Proof. It is enough to repeat the proof of Lemma 4.1 simply by replacing the matrix W (v)

with the matrix of components � Giuh − ∂uh

∂xi
� � Gjuh − ∂uh

∂xj
� . 	

Notice that both the upper and lower bounds in Lemmas 4.1 and 4.2 are sharp.

Let us derive now a relation between ∇eh and the corresponding “recovered” quantity
(GZZuh −∇uh).

Lemma 4.3 Under the Assumption 4.1 and for any K ∈ Th, we have that

1

(1 + νK)
‖GZZuh −∇uh‖L2(∆K) ≤ ‖∇eh‖L2(∆K) ≤

1

(1 − νK)
‖GZZuh −∇uh‖L2(∆K).

(29)

Proof. From (27) and thanks to the triangle inequality, we deduce that, for i = 1, 2, ∂eh

∂xi


L2(∆K)

≤ νK

 ∂eh

∂xi


L2(∆K)

+
 Giuh − ∂uh

∂xi


L2(∆K)
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that is  ∂eh

∂xi


L2(∆K)

≤ 1

1 − νK

 Giuh − ∂uh

∂xi


L2(∆K)

. (30)

The upper bound in (29) immediately follows from (30). Likewise, it can be inferred that,
for i = 1, 2,  Giuh − ∂uh

∂xi


L2(∆K)

≤ (1 + νk)
 ∂eh

∂xi


L2(∆K)

i.e.  ∂eh

∂xi


L2(∆K)

≥ 1

1 + νk

 Giuh − ∂uh

∂xi


L2(∆K)

.

This completes the proof of (29). 	
The next Lemma relates the L2(K)-norm of the gradient of any function v ∈ H1(K) to
the energy norm of v, on a generic triangle K.

Lemma 4.4 Let γmax and γmin denote the maximum and minimum eigenvalue of the
diffusive matrix A, respectively. Then for any K ∈ Th and for any v ∈ H1(K), the
following equivalence can be proved

γ
1/2
min

‖∇v‖L2(K) ≤ |||v|||K ≤ γ1/2
max

‖∇v‖L2(K). (31)

Proof. The simplifying hypotheses made at the beginning of this section reduce the definition
(11) of the energy norm of v on K to

|||v|||2K = B(v, v) �� K =

�
K � a11 � ∂v

∂x1
� 2

+ 2 a12
∂v

∂x1

∂v

∂x2
+ a22 � ∂v

∂x2
� 2 � d~x. (32)

The integrand of (32) can be identified with the numerator of the Rayleigh quotient�
(∇v)T A∇v ��� �

(∇v)T ∇v � . Now, as

γmin (∇v)T∇v ≤ (∇v)T A∇v ≤ γmax (∇v)T∇v,

we can integrate such relations on the triangle K to obtain

γmin ‖∇v‖2
L2(K) ≤ |||v|||2K ≤ γmax ‖∇v‖2

L2(K),

i.e. (31). 	
Remark 4.1 Result (31) can be reformulated on any patch of elements ∆K simply by
extending the integration step from K to ∆K and under the assumption v ∈ H1(∆K).

The last result of this section turns out to be an essential tool in the proof of both
the efficiency and the reliability of the error estimator (26).

Lemma 4.5 Under the Assumption 4.1 it can be proved that, for any K ∈ Th,

1 − νK

s
1/2
K γ

1/2
max

|||eh|||∆K
≤ wK(e∗h) ≤ s

1/2
K (1 + νK)

γ
1/2
min

|||eh|||∆K
, (33)

γmax and γmin being defined as in Lemma 4.4.
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Proof. First, let us exploit relation (28) by choosing α = sK and β = 1/sK . This yields

1

s
1/2
K

‖GZZuh −∇uh‖L2(∆K) ≤ wK(e∗h) ≤ s
1/2
K ‖GZZuh −∇uh‖L2(∆K).

Now, for any K ∈ Th, from (29), we have

(1 − νK)

s
1/2
K

‖∇eh‖L2(∆K) ≤ wK(e∗h) ≤ s
1/2
K (1 + νK) ‖∇eh‖L2(∆K)

which immediately provides (33) thanks to Lemma 4.4 extended to the whole patch ∆K . 	
4.2 Anisotropic bubble functions

Typically, the efficiency of an error estimator is studied by using the properties of bubble
functions (see, e.g., [1, 36]).
In particular, we base the efficiency analysis of Section 6 on a new type of bubble
functions which we define anisotropic bubble functions. This turns out to be the main
novelty of our analysis.
Like in the case of the standard bubble functions, we distinguish between triangle and
edge bubble functions, denoted in the sequel with bA

K and bA
E , respectively. We define

both types of bubbles through the solution of suitable eigenvalue problems.
For any K ∈ Th, the triangle anisotropic bubble function bA

K is defined by the relation
bA
K = b �

K ◦ T−1
K , where b �

K solves the problem

{
−∆b �

K = λ̂ b �

K in K̂

b �

K = 0 on ∂K̂,
(34)

∆ denoting the standard Laplacian operator. Thus bA
K is determined by computing

the eigenfunction b �

K in K̂ associated with the Laplacian operator provided with ho-
mogeneous Dirichlet boundary conditions, and then mapping it to triangle K via the
transformation TK . It is also understood that the eigenfunction b �

K corresponds to the

least (positive) eigenvalue λ̂ of (34) and it is normalized such that max
~x∈K

bA
K(~x) = 1 (see

Fig. 3, left).
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Figure 3: The anisotropic triangle (left) and edge (right) bubble functions bA
K and bA

E

both corresponding to sK = 10.
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Likewise for any pair of triangles K, K ′ sharing the edge E ∈ Eh,Ω, the edge bubble
function bA

E, supported in QE = K ∪ K ′, is defined by the relations bA
E

∣∣
K

= b �

E ◦ T−1
K ,

bA
E

∣∣
K′

= b �

E ◦ T̃−1
K′ , where b �

E solves the problem

{
−∆b �

E = λ̃ b �

E in Q̂ �

E ,

b �

E = 0 on ∂Q̂ �

E ,
(35)

Q̂ �

E is the quadrilateral obtained by joining K̂ with the equilateral triangle K̂ ′,

(1/2, 0), (1,
√

3/2), (0,
√

3/2), along the side Ê with extremes (0,
√

3/2), (1/2, 0), and

T̃K′ is the map from triangle K̂ ′ to K ′.
Notice that the choice made for Ê is not restrictive, any other edge of K̂ will do,
because of its symmetry. Moreover, since K̂ ′ coincides with K̂ up to a rigid motion, T̃K′

is characterized by the same eigenvalues λ1, K′ , λ2, K′ as the ones obtained by mapping

K̂ directly to K ′ via the mapping TK′ . Finally, T̃K′ and TK coincide on Ê.
As above, it is understood that the eigenfunction b �

E corresponds to the least (positive)

eigenvalue λ̃ of (35) and it is normalized such that max
~x∈QE

bA
E(~x) = 1 (see Fig. 3, right).

Results corresponding to those stated for the standard bubble functions (see, e.g.,
[36]) can be proved also for bA

K and bA
E . Let us summarize these properties in the

following

Lemma 4.6 For any K ∈ Th, E ∈ Eh,Ω and QE = K ∪ K ′, with K and K ′ triangles
sharing the edge E, the following properties hold:

supp (bA
K) ⊂ K, 0 ≤ bA

K(~x) ≤ 1 for any ~x ∈ K, max
~x∈K

bA
K(~x) = 1, (36)

supp (bA
E) ⊂ QE , 0 ≤ bA

E(~x) ≤ 1 for any ~x ∈ QE , max
~x∈E

bA
E(~x) = 1, (37)

∫

K

bA
K d~x = C �

K |K|, (38)

∫

E

bA
E ds = C∗

�

K
hE , (39)

∫

T

bA
E d~x ≤ Ĉ sT h2

E with T ∈ {K, K ′}, (40)

‖∇bA
K‖L2(K) =

λ̂1/2 (1 + s2
K)1/2

21/2 λ1,K
‖bA

K‖L2(K) , (41)

‖∇bA
E‖L2(T ) ≤

λ̃1/2 sT

λ1,T
‖bA

E‖L2(T ) with T ∈ {K, K ′}, (42)

where C �

K , C∗
�

K
, Ĉ are constants depending only on the reference triangle K̂ and sT is

the stretching factor of the element T .

Proof. Let us start with the properties of the triangle bubble function bA
K . Relations (36)

follow immediately by the definition of bA
K and by the choice made for its normalization.
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Let us now prove (38). Employing the relation |K| = λ1,Kλ2,K | �K|, we have�
K

bA
K d~x = λ1,Kλ2,K

�
�K b �K d~�x =

|K|
| �K|

�
�K b �K d~�x.

Thus, �
K

bA
K d~x = C �K |K|,

where C �K =

�
�K b �K d~�x/| �K| depends on the reference triangle only.

To prove (41), the weak form of (34) immediately yields

‖∇b �K‖2
L2( �K)

= �λ ‖b �K‖2
L2( �K)

.

When passing to triangle K this relation becomes

sK

�
~r T
1,KGK(bA

K)~r1,K � +
1

sK

�
~r T
2,KGK(bA

K)~r2,K � =
�λ

λ1,Kλ2,K
‖bA

K‖2
L2(K), (43)

where the summation implied by the definition of the matrix GK runs only on K since
supp(bA

K) ⊂ K. We first show that

sK

�
~r T
1,KGK(bA

K)~r1,K � =
1

sK

�
~r T
2,KGK(bA

K)~r2,K � . (44)

The argument combines a slight modification of the proof of Lemma 2.2 in [11] with a symmetry
argument. Let us introduce a unit vector ~χ. We express the directional derivative along
direction ~χ of a generic function �v ∈ H1( �K), in terms of the derivatives of its image v defined
in K. We have,

�∇ �v · ~χ = ~χ T MT
K∇v = ~χ T ZT

KBK∇v = ~χ T ZT
KRT

KΛKRK∇v .

It then follows
| �∇ �v · ~χ|2 = |(RKZK ~χ)T ΛKRK∇v|2 .

Choosing ~χ = ~χ1 such that RKZK ~χ1 = (1, 0)T , we obtain�
�K
| �∇ �v · ~χ1|2 d~�x =

�
�K

λ2
1,K(~r T

1,K∇v)2 d~�x

=

�
K

λ1,K

λ2,K
(~r T

1,K∇v)2 d~x = sK

�
~r T
1,KGK(v)~r1,K � , (45)

while picking ~χ = ~χ2 such that RKZK ~χ2 = (0, 1)T , we have�
�K
| �∇ �v · ~χ2|2 d~�x =

�
�K

λ2
2,K(~r T

2,K∇v)2 d~�x

=

�
K

λ2,K

λ1,K
(~r T

2,K∇v)2 d~x =
1

sK

�
~r T
2,KGK(v)~r2,K � .

(46)

Notice that, by construction, ~χ1 · ~χ2 = 0. Identifying in (45) and (46) v with bA
K , we infer that

terms at the left and right-hand sides in (44) can be rewritten, with respect to the orthogonal
directions ~χ1 and ~χ2, as

sK

�
~r1,KGK(bA

K)~r1,K � =

�
�K | �∇b �K · ~χ1|2 d~�x ,

1

sK

�
~r T
2,KGK(bA

K)~r2,K � =

�
�K | �∇b �K · ~χ2|2 d~�x ,
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respectively. Finally, relation (44) follows on noticing that b �K is invariant by rotations, thus
implying that the two integral above are equal. Property (44) together with the relation

~r T
1,KGK(bA

K)~r1,K + ~r T
2,KGK(bA

K)~r2,K = ‖∇bA
K‖2

L2(K)

and (43), allow us to conclude

‖∇bA
K‖2

L2(K) =
�λ(1 + s2

K)

2sKλ1,Kλ2,K
‖bA

K‖2
L2(K) =

�λ(1 + s2
K)

2λ2
1,K

‖bA
K‖2

L2(K) ,

that is (41).
Let us now deal with the properties associated with the edge bubble function bA

E . Relations
(37) follow immediately from the definition and normalization of bA

E , and observing that, also

by a symmetry argument, the maximum of b �E is assumed at the midpoint of �E, which implies
that the maximum of bA

E is taken at the midpoint of E as well.
Equality (39) follows from �

E

bA
E ds =

hE

h �E
�
�E b �E ds = C∗�KhE ,

the constant C∗�K being defined as C∗�K = h−1�E
�
�E b �E ds.

Let us now prove (40) by choosing T = K. We have�
K

bA
E d~x = λ1,Kλ2,K

�
�K b �E d~�x = C �E λ1,Kλ2,K

h2
E

h2
E ≤ �CsKh2

E ,

where C �E =

�
�K b �E d~�x and having also used the relation

1

hE
≤ 1

ρK
≤ 1

ρ �Kλ2,K
, (47)

ρK , ρ �K being the diameters of the balls inscribed in K and �K, respectively. Thus, �C = C �E/ρ2�K .
Likewise an analogous relation holds when T = K ′.

Finally, by the invariance of the domain �Q �E and of the operator ∆ in (35) with respect to

a rotation of an angle π, it follows that ∂b �E/∂~n �E = 0, where ~n �E is the unit normal across �E.

This property allows us to rewrite (35) in each of the two triangles �K, �K′

����� ����
−∆b �E = �λb �E in �K

∂b �E
∂~n �E = 0 on �E

b �E = 0 on ∂ �K \ �E

(48)

and similarly in �K′. We are now in the same position as in the case of b �K as the weak form of
(48) gives

‖∇b �E‖2
L2( �K)

= �λ‖b �E‖2
L2( �K)

.

Thus a property analogous to (43) holds also for bA
E|K and bA

E |K′ , where it is understood that
the summation implied by the definition of the matrices GK and GK′ runs only on K and K ′,
respectively. However, it is no longer possible to prove the analogue to (44) using the same

argument, as b �E| �K is not invariant by rotations in �K. On the other hand, applying Lemma 4.1
on K with v = bA

E|K , α = sK and β = 1/sK (and similarly on K ′), we obtain

sK

�
~r T
1,KGK(bA

E �� K)~r1,K � +
1

sK

�
~r T
2,KGK(bA

E �� K)~r2,K � ≥ 1

sK
‖∇bA

E‖2
L2(K),
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and then, from the analogue to (43) for bA
E,

||∇bA
E ||2L2(K) ≤

�λ
λ2

2,K

||bA
E ||2L2(K) =

�λs2
K

λ2
1,K

||bA
E ||2L2(K),

which proves (42). Notice that (42) is less sharp than (41), the latter being and equality and
because

� 1 + s2
K

2
� 1/2

≤ sK ,

for any sK ≥ 1, with equality holding only when sK = 1. 	
Remark 4.2 The definition provided for the edge bubble function bA

E via the problem
(35) is not suited when E ∈ Eh,N . In such a case the boundary problem (35) has to be
replaced by a new one similar to (48).

We are now in a position to study the reliability and the efficiency of the error
estimator (26).

5 Reliability of ηT

Let us first prove the following Lemma, which, basically, establishes an equivalence
between the quantities wK(eh) and wK(e∗h) provided that the stretching factor sK is
bounded from above by a quantity depending on νK and such that the smaller νK , the
larger sK can be. On the contrary, should this bound not hold, then the constants in
the equivalence relations would depend on sK .

Lemma 5.1 Under the assumption that

νK(2 + νK)
(
1 +

s2
K + 1/s2

K

2

)
≤ C∗,

for some positive constant C∗ < 1/2, where νK is defined via (27), then it holds that

C1 w2
K(e∗h) ≤ w2

K(eh) ≤ C2 w2
K(e∗h), (49)

where C1 = C1(C∗) > 0, C2 = C2(C∗) > C1 and lim
νK→0

C1 = lim
νK→0

C2 = 1.

Proof. Let us rewrite the expression for wK(eh) and wK(e∗h) given by (17) and (22),
respectively. Let ~r1,K = [c s]T and ~r2,K = [−s c]T , with c = cos θ and s = sin θ, for some

θ ∈ [0, π[. We have w2
K(eh) = ~r T

1,K M ~r1,K , w2
K(e∗h) = ~r T

1,K �M ~r1,K where M = {mij} and�M = { �mij} ∈ R
2×2

are the symmetric positive definite matrices given by

mij =

��������� ��������

sK

 ∂eh

∂x1

 2
L2(∆K)

+
1

sK

 ∂eh

∂x2

 2
L2(∆K)

, i = j = 1,�
sK − 1

sK � �
∆K

∂eh

∂x1

∂eh

∂x2
d~x, i 6= j,

sK

 ∂eh

∂x2

 2
L2(∆K)

+
1

sK

 ∂eh

∂x1

 2
L2(∆K)

, i = j = 2,
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and

�mij =

��������� ��������

sK

 G1uh − ∂uh

∂x1

 2
L2(∆K)

+
1

sK

 G2uh − ∂uh

∂x2

 2
L2(∆K)

, i = j = 1,

� sK − 1

sK
� �

∆K � G1uh − ∂uh

∂x1
� � G2uh − ∂uh

∂x2
� d~x, i 6= j,

sK

 G2uh − ∂uh

∂x2

 2
L2(∆K)

+
1

sK

 G1uh − ∂uh

∂x1

 2
L2(∆K)

, i = j = 2,

respectively. To prove (49) it suffices to show under what conditions

w2
K(e∗h)

w2
K(eh)

=
~r T
1,K �M ~r1,K

~r T
1,K M ~r1,K

is bounded from below and from above, independently of sK . This is equivalent to requiring
that the eigenvalues µ of the generalized eigenvalue problem�M~x = µM~x,

or alternatively, that the eigenvalues of the symmetric part of the positive definite matrix
M−1 �M do not depend on sK .

For ease of notation, throughout we let eij =

�
∆K

∂eh

∂xi

∂eh

∂xj
d~x and Eij =

�
∆K

�
Giuh −

∂uh

∂xi
� � Gjuh − ∂uh

∂xj
� d~x, for i, j = 1, 2, and for generality we let sK and 1/sK be replaced by

any two positive constants α, β, respectively, with α ≥ β.
Let us rewrite the elements of �M as �mij = mij + εij , for i, j = 1, 2, with

εij =

�������������������������� �������������������������

α �  G1uh − ∂u

∂x1

 2
L2(∆K)

+ 2

�
∆K

∂eh

∂x1 � G1uh − ∂u

∂x1
� d~x�

+ β �  G2uh − ∂u

∂x2

 2
L2(∆K)

+ 2

�
∆K

∂eh

∂x2 � G2uh − ∂u

∂x2
� d~x � , i = j = 1,

(α − β) � �
∆K

∂eh

∂x1 � G2uh − ∂u

∂x2
� d~x +

�
∆K

∂eh

∂x2 � G1uh − ∂u

∂x1
� d~x

+

�
∆K � G1uh − ∂u

∂x1
� � G2uh − ∂u

∂x2
� d~x� , i 6= j,

α �  G2uh − ∂u

∂x2

 2
L2(∆K)

+ 2

�
∆K

∂eh

∂x2 � G2uh − ∂u

∂x2
� d~x�

+ β �  G1uh − ∂u

∂x1

 2
L2(∆K)

+ 2

�
∆K

∂eh

∂x1 � G1uh − ∂u

∂x1
� d~x � , i = j = 2.

The “perturbations” εij can be bounded using (27) and the Cauchy-Schwarz inequality as

−2νK � αe11 + βe22 � ≤ ε11 ≤ νK(νK + 2) � αe11 + βe22 � ,

−νK(νK + 2)(α − β)e
1/2
11 e

1/2
22 ≤ ε12 ≤ νK(νK + 2)(α − β)e

1/2
11 e

1/2
22 ,

−2νK � αe22 + βe11 � ≤ ε22 ≤ νK(νK + 2) � αe22 + βe11 � .

(50)

A simple computation shows that

M−1 �M = I +
1

det(M) ���� m22ε11 − m12ε12 m22ε12 − m12ε22

m11ε12 − m12ε11 m11ε22 − m12ε12

	 

� ,
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where I is the identity matrix and det(M) is the determinant of M . The symmetric part of

M−1 �M is thus given by (M−1 �M)sym = I +
1

det(M)
C, with

C = {cij} = ���� m22ε11 − m12ε12
(m11 + m22)ε12 − m12(ε11+ε22)

2

(m11 + m22)ε12 − m12(ε11+ε22)

2
m11ε22 − m12ε12

	 

� .

We next bound the entries of C by exploiting inequalities (50). Tedious but straightforward
computations yield

−ν2
K(α − β)2e11e22 − 2νK � 2(α2 + β2)e11e22 + αβ(e11 − e22)

2 � ≤ c11, c22

≤ νk(νK + 2) � 2(α2 + β2)e11e22 + αβ(e11 − e22)
2 � ,

|c12| ≤ νK(νK + 2)(α2 − β2)e
1/2
11 e

1/2
22 (e11 + e22).

(51)

Moreover, using the Cauchy-Schwarz inequality

det(M) = m11m22 − m2
12 = (αe11 + βe22)(αe22 + βe11) − (α − β)2e2

12

≥ (αe11 + βe22)(αe22 + βe11) − (α − β)2e11e22 = αβ(e11 + e22)
2.

It can be checked that the largest bound of the absolute value for c11, c22 in (51) is the upper
bound, so that we obtain

|c11|
m11m22 − m2

12

≤ νK(νK + 2)

�
2(α2 + β2)e11e22 + αβ(e11 − e22)

2 �
αβ(e11 + e22)2

= νK(νK + 2) � �
e11 − e22

e11 + e22 � 2� ��� �
a1

+2
α2 + β2

αβ

�
e
1/2
11 e

1/2
22

e11 + e22 � 2� ��� �
a2

�
≤ νK(νK + 2) � 1 +

α2 + β2

2αβ
� ,

(52)

as a1 ≤ 1 and a2 ≤ 1/4. Analogously, we have

|c12|
m11m22 − m2

12

≤ νK(νK + 2)
α2 − β2

αβ

e
1/2
11 e

1/2
22 (e11 + e22)

(e11 + e22)2

≤ νK(νK + 2)
α2 − β2

αβ

�
e
1/2
11 e

1/2
22

e11 + e22 �� ��� �
√

a2

≤ νK(νK + 2)
α2 − β2

2αβ
,

(53)

as
√

a2 ≤ 1/2. The thesis follows using Gershgorin theorem to bound the eigenvalues of

(M−1 �M)sym, on noting that the term 1 + (α2 + β2)/(2αβ) in (52) is always greater than

(α2−β2)/(2αβ) in (53), and recalling that, for the case at hand, α = sK , and β = 1/sK . Thus,

both the radius and the center of the two circles containing the eigenvalues of (M−1 �M)sym − I

are bounded by the same quantity, i.e. the right-hand side of (52), so that the constraint

C∗ < 1/2 guarantees that the lower bound for the estimate of the eigenvalues of the matrix is

positive. We note that, while the true eigenvalues of the matrix M−1 �M are positive, this may

not be the case for their estimates, unless the requirement C∗ < 1/2 is made. Moreover, as

νK → 0, both C1 and C2 tend to one, since M−1 �M → I, due to (50). 	
The reliability of the error estimator ηT in (26) is stated by the following
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Proposition 5.1 The error estimator (26) is reliable, i.e.,

|||eh||| ≤ C
{ ∑

K∈Th

η2
K,T +

∑

K∈Th

λ2
1,K‖f − fK‖2

L2(K)

+
∑

K∈Th

λ2
1,K

λ2,K

∑

E∈E(K)∩Eh,N

‖g − gE‖2
L2(E)

}1/2
(54)

where C = C(N, C∆, C2, γmin).

Proof. First, let us prove the intermediate result

|||eh||| ≤ CR η, (55)

where η is the global error indicator (21). This follows immediately from Proposition 3.1 and
Lemma 5.1, with CR = CR(N, C∆, C2).

From (55) and recalling the definitions of ηK and ηK,T , we obtain

|||eh|||2 ≤ CR

�
K∈Th � � λ1/2

1,Kλ
1/2
2,K ‖f − fK‖L2(K) + λ

1/2
1,Kλ

1/2
2,K ‖fK‖L2(K)

+
λ

1/2
1,K

2

�
E∈E(K)∩Eh,Ω

 � ∂uh

∂~nL,K
�

E


L2(E)

+ λ
1/2
1,K

�
E∈E(K)∩Eh,N

‖g − gE‖L2(E)

+ λ
1/2
1,K

�
E∈E(K)∩Eh,N

 gE − ∂uh

∂~nL,K


L2(E)

� wK(e∗h) � = CR

�
K∈Th

η2
K,T

+ CR

�
K∈Th � � λ1/2

1,Kλ
1/2
2,K ‖f − fK‖L2(K) + λ

1/2
1,K

�
E∈E(K)∩Eh,N

‖g − gE‖L2(E) � wK(e∗h) � .

(56)

Our goal is to bound the right-hand side of (56) in terms of ηK,T and of the data perturbations
(f − fK) and (g − gE) only. Let us exploit Lemma 4.5 and Young inequality to get

|||eh|||2 ≤ CR

�
K∈Th

η2
K,T + CR

�
K∈Th � � λ1,K ‖f − fK‖L2(K)

+
λ1,K

λ
1/2
2,K

�
E∈E(K)∩Eh,N

‖g − gE‖L2(E) � (1 + νK)

γ
1/2
min

|||eh|||∆K
�

≤ CR

�
K∈Th

η2
K,T + CR

�
K∈Th � 2 ε (1 + νK)2

γmin
|||eh|||2∆K

+
1

4ε � λ2
1,K ‖f − fK‖2

L2(K)

+
λ2

1,K

λ2,K �
�

E∈E(K)∩Eh,N

‖g − gE‖L2(E) � 2 � �
≤ CR �

�
K∈Th

η2
K,T +

2 ε (1 + ν)2

γmin

�
K∈Th

|||eh|||2∆K
+

1

4 ε

�
K∈Th

λ2
1,K‖f − fK‖2

L2(K)

+
1

2ε

�
K∈Th

λ2
1,K

λ2,K

�
E∈E(K)∩Eh,N

‖g − gE‖2
L2(E) � ,

where we have used the fact that, for any K ∈ Th, the number of Neumann edges is at most equal
to 2, while ν = max

K∈Th

νK , νK being defined via (27), and ε is the parameter associated with the
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Young inequality, to be suitably chosen. As from (6) it follows that
�

K∈Th

|||eh|||2∆K
≤ N |||eh|||2,

we get

� 1 − 2CRεN(1 + ν)2

γmin
� |||eh|||2 ≤ CR �

�
K∈Th

η2
K,T

+
1

4ε

�
K∈Th

λ2
1,K‖f − fK‖2

L2(K) +
1

2 ε

�
K∈Th

λ2
1,K

λ2,K

�
E∈E(K)∩Eh,N

‖g − gE‖2
L2(E) � .

(57)

To make inequality (57) meaningful, we have to assure that

1 − 2CRεN(1 + ν)2

γmin
> 0 i.e. ε <

γmin

2CRN(1 + ν)2
.

For instance, the choice ε = γmin/(4CRN(1 + ν)2) guarantees that

|||eh||| ≤ CR �
�

K∈Th

η2
K,T +

CRN(1 + ν)2

γmin

�
K∈Th

λ2
1,K‖f − fK‖2

L2(K)

+
2CRN(1 + ν)2

γmin

�
K∈Th

λ2
1,K

λ2,K

�
E∈E(K)∩Eh,N

‖g − gE‖2
L2(E) � 1/2

,

namely the reliability result (54), where C = CR max � 1,
8N

γmin
CR � , with CR defined through

(55). 	
Remark 5.1 Notice that the contribution of the data oscillation increases as N gets
larger, i.e., when the maximum number of elements of a patch increases. Moreover, the
reliability result does not depend explicitly on ν since this quantity appears in the form
1 + ν which is uniformly bounded between 1 and 2.

6 Efficiency of ηT

To prove the efficiency of the error estimator defined in (26), let us study separately the
three terms at the right-hand side of (25):

η2
K,T = λ

1/2
1,K λ

1/2
2,K‖fK‖L2(K) wK(e∗h)

︸ ︷︷ ︸
( I )

+
λ

1/2
1,K

2

( ∑

E∈E(K)∩Eh,Ω

∥∥∥
[ ∂uh

∂~nL,K

]
E

∥∥∥
L2(E)

)
wK(e∗h)

︸ ︷︷ ︸
( II )

+ λ
1/2
1,K

( ∑

E∈E(K)∩Eh,N

∥∥∥
(
gE − ∂uh

∂~nL,K

)∣∣∣
E

∥∥∥
L2(E)

)
wK(e∗h)

︸ ︷︷ ︸
( III )

.

(58)

In the Lemmas below we bound the three quantities ( I ), ( II ) and ( III ) in terms of
the data perturbations (f − fK) and (g − gE), and of the energy norm |||eh|||∆K

of the
discretization error on the patch ∆K .
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First, let us provide two results used in the sequel. The first one is relation (18)
rewritten on the whole domain Ω and by recalling the simplifying assumptions made in
Section 4 on the initial problem (9). We have

∫

Ω

( 2∑

i,j=1

aij
∂eh

∂xj

∂v

∂xi

)
d~x =

∫

Ω

fv d~x +

∫

ΓN

gv ds −
∫

Ω

( 2∑

i,j=1

aij
∂uh

∂xj

∂v

∂xi

)
d~x. (59)

The second result is obtained by suitably integrating by parts the right-hand side of
(59):

∫

Ω

fv d~x +

∫

ΓN

gv ds −
∫

Ω

( 2∑

i,j=1

aij
∂uh

∂xj

∂v

∂xi

)
d~x

=

∫

Ω

fv d~x +

∫

ΓN

gv ds +
∑

K∈Th

{ ∫

K

( 2∑

i,j=1

aij
∂2uh

∂xi ∂xj
v
)

d~x −
∫

∂K

∂uh

∂~nL,K
v ds

}

=
∑

K∈Th

∫

K

fv d~x +
∑

E∈Eh,N

∫

E

(
g − ∂uh

∂~nL,K

)
v ds −

∑

E∈Eh,Ω

∫

E

[ ∂uh

∂~nL,K

]
E

v ds,

(60)

the diffusive matrix A having been assumed constant.
Let us begin to analyze the term ( I ) in (58).

Lemma 6.1 Under the Assumption 4.1, the bound

( I ) ≤ 1 + νK

C
1/2

�

K
γmin

[(CA λ̂1/2 (1 + s2
K)1/2

21/2
+

γmin

4

)
|||eh|||2∆K

+λ2
1,K ‖f −fK ||2L2(K)

]
(61)

holds, where γmin is the minimum eigenvalue of the constant diffusive matrix A, λ̂ is
the eigenvalue of the problem (34), CA = 4 max

i,j=1, 2
|aij |, and νK and C �

K are defined by

relations (27) and (38), respectively.

Proof. First, let us introduce the auxiliary function σK defined by

σK = sign(fK) bA
K |K|−1/2,

sign denoting the sign-function and where bA
K is the triangle anisotropic bubble function intro-

duced in Section 4.2. Lemma 4.6 immediately yields�
K

fK σK d~x = |fK | |K|−1/2

�
K

bA
K d~x = C �K ‖fK‖L2(K),

that is

‖fK‖L2(K) =
1

C �K
�
K

fK σK d~x. (62)
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Now, since supp(σK) ⊂ K, and from equations (60), (59) and Lemma 4.6 we get�
K

fK σK d~x =

�
K

f σK d~x +

�
K

(fK − f) σK d~x

=

�
Ω

f σK d~x +

�
ΓN

g σK ds −
�
Ω �

2�
i,j=1

aij
∂uh

∂xj

∂σK

∂xi
� d~x +

�
K

(fK − f) σK d~x

=

�
K �

2�
i,j=1

aij
∂eh

∂xj

∂σK

∂xi
� d~x +

�
K

(fK − f) σK d~x

≤ CA ‖∇eh‖L2(K)‖∇σK‖L2(K) + ‖f − fK‖L2(K)‖σK‖L2(K)

≤ |K|−1/2 �
�
K

bA
K d~x � 1/2

� CA
�λ1/2 (1 + s2

K)1/2

21/2 λ1,K
‖∇eh‖L2(K) + ‖f − fK‖L2(K) �

= C
1/2�K � CA

�λ1/2 (1 + s2
K)1/2

21/2 λ1,K
‖∇eh‖L2(K) + ‖f − fK‖L2(K) � .

(63)

Going back to the term ( I ) in (58) we have

( I ) ≤ λ
1/2
1,Kλ

1/2
2,K

1

C
1/2�K � CA

�λ1/2 (1 + s2
K)1/2

21/2 λ1,K
‖∇eh‖L2(K) + ‖f − fK‖L2(K) � wK(e∗h)

≤ λ1,K
1

C
1/2�K � CA

γ
1/2
min

�λ1/2 (1 + s2
K)1/2

21/2 λ1,K
|||eh|||K + ‖f − fK‖L2(K) � 1 + νK

γ
1/2
min

|||eh|||∆K

≤ 1 + νK

(C �K γmin)1/2
� CA

γ
1/2
min

�λ1/2 (1 + s2
K)1/2

21/2
|||eh|||2∆K

+ λ1,K ‖f − fK‖L2(K)|||eh|||∆K

�
,

(64)
where relations (62), (63), (31) and (33) have been exploited. Let us further rewrite the product
λ1,K ‖f − fK‖L2(K) |||eh|||∆K

via the Young inequality:

λ1,K ‖f − fK‖L2(K) |||eh|||∆K
≤ λ2

1,K

γ
1/2
min

‖f − fK‖2
L2(K) +

γ
1/2
min

4
|||eh|||2∆K

,

which, inserted into (64), provides the estimate (61). 	
The term ( II ) in (58) can be bounded thanks to a similar procedure.

Lemma 6.2 Under the Assumption 4.1 it can be proved that

( II ) ≤ 3 C
∗
(1 + νK)

2 C∗
�

K
γmin

[
sK

(γmin

4
h

1/2
�

K
+

CA

ρ
1/2

�

K

)
|||eh|||2∆K

+λ2
1,K N h

1/2
�

K

∑

T∈∆K

‖f − fT ‖2
L2(T )

]
,

(65)

where

C
∗

= Ĉ1/2 max(s
1/2
K , s

1/2
K′ ) max

{
1 +

1

C
1/2

�

K

, max(sK , sK′) h �

K

(
λ̃1/2 +

( 2 λ̂

C �

K

)1/2)}
,

K ′ is the triangle sharing edge E with K, νK , CA, γmin, C �

K and λ̂ are defined as in

Lemma 6.1, λ̃ is the eigenvalue of the problem (35), the constants N , C∗
�

K
and Ĉ are
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defined by relations (6), (39) and (40), and h �

K , ρ �

K are the diameter of K̂ and of the
ball inscribed in it, respectively.

Proof. Let us introduce the auxiliary function σE associated with a generic internal edge
E ∈ E(K) ∩ Eh,Ω,

σE = sign � � ∂uh

∂~nL,K
�

E
� h

−1/2
E bA

E ,

bA
E denoting the edge anisotropic bubble function defined in Section 4.2. As, thanks to Lemma

4.6, �
E

� ∂uh

∂~nL,K
�

E
σE ds = ��� � ∂uh

∂~nL,K
�

E

��� h−1/2
E

�
E

bA
E ds = C∗�K  � ∂uh

∂~nL,K
�

E


L2(E)

,

we immediately deduce that � ∂uh

∂~nL,K
�

E


L2(E)

=
1

C∗�K
�
E

� ∂uh

∂~nL,K
�

E
σE ds. (66)

As supp(σE) ⊂ QE , and thanks to results (60), (59) and Lemma 4.6 we infer�
E

� ∂uh

∂~nL,K
�

E
σE ds

=
�

T∈QE

�
T

f σE d~x −
�
Ω

f σE d~x −
�

ΓN

g σE ds +

�
Ω �

2�
i,j=1

aij
∂uh

∂xj

∂σE

∂xi
� d~x

=
�

T∈QE

�
T

f σE d~x −
�

QE �
2�

i,j=1

aij
∂eh

∂xj

∂σE

∂xi
� d~x

≤ ‖f‖L2(QE) ‖σE‖L2(QE) + CA ‖∇eh‖L2(QE) ‖∇σE‖L2(QE)

≤ h
−1/2
E �

�
QE

bA
E d~x � 1/2

� ‖f‖L2(QE)

+CA h �K �λ1/2 h−1
E max(sK , sK′ ) ‖∇eh‖L2(QE) �

≤ �C1/2 max(s
1/2
K , s

1/2

K′ ) � h
1/2
E ‖f‖L2(QE)

+CA h �K h
−1/2
E �λ1/2 max(sK , sK′ )‖∇eh‖L2(QE) �

≤ �C1/2 max(s
1/2
K , s

1/2
K′ ) � h

1/2
E

�
T∈QE

‖f − fT ‖L2(T )

+h
1/2
E

�
T∈QE

‖fT ‖L2(T ) + CA h �K h
−1/2
E �λ1/2 max(sK , sK′ )‖∇eh‖L2(QE) � ,

where relation (19) has been exploited. Now, by suitably using equalities (62) and (63) to
estimate the norms ‖fT ‖L2(T ), we get�

E

� ∂uh

∂~nL,K
�

E
σE ds ≤ C

∗ � h1/2
E

�
T∈QE

‖f − fT ‖L2(T ) +
CA

(ρ �Kλ2,K)1/2
‖∇eh‖L2(QE) � ,

where relation (19), (47), together with�
T∈QE

‖∇eh‖L2(T ) ≤
√

2 ‖∇eh‖L2(QE),
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and
h

1/2
E (1 + s2

T )1/2

21/2 λ1,T
≤ h

1/2
E sT

h �K
hE

= h
−1/2
E h �K sT ,

have been used. Thanks to the relations (31), (33) and (66), we get

( II ) ≤
λ

1/2
1,K C

∗

2 C∗�K �
�

E∈E(K)∩Eh,Ω

� h1/2
E

�
T∈QE

‖f − fT ‖L2(T )

+
CA

(γmin ρ �K λ2,K)1/2
|||eh|||QE

� � wK(e∗h)

≤ 3 C
∗

2 C∗�K � λ1,K h
1/2�K �

T∈∆K

‖f − fT ‖L2(T ) + CA � sK

ρ �K γmin
� 1/2

|||eh|||∆K
�

s
1/2
K (1 + νK)

γ
1/2
min

|||eh|||∆K

=
3 C

∗
(1 + νK)

2 C∗�K γ
1/2
min

� λ3/2
1,K

λ
1/2
2,K

h
1/2�K |||eh|||∆K

�
T∈∆K

‖f − fT ‖L2(T )

+
sK

(ρ �K γmin)1/2
CA |||eh|||2∆K

� ,

where relation �

E∈E(K)∩Eh,Ω

QE ⊆ ∆K ,

along with (19), and the fact that E(K) consists of three edges have been used. Finally, we
exploit the Young inequality to split the term

|||eh|||∆K

�
T∈∆K

‖f − fT ‖L2(T ):

λ
3/2
1,K

λ
1/2
2,K

|||eh|||∆K

�
T∈∆K

‖f − fT ‖L2(T ) ≤
γ

1/2
min

4
sK |||eh|||2∆K

+
λ2

1,K

γ
1/2
min

N
�

T∈∆K

‖f − fT ‖2
L2(T ).

This yields result (65). 	
Finally, let us consider the term ( III ) in (58).

Lemma 6.3 Under the Assumption 4.1 we have

( III ) ≤ 2 C
∗∗

C∗
�

K

(1 + νK)

γmin

[
sK

( CA

ρ
1/2

�

K

+
γmin

4
h

1/2
�

K
+

γmin

4

)
|||eh|||2∆K

+h
1/2

�

K
λ2

1,K ‖f − fK‖2
L2(K) + 2 λ1,K

∑

E∈E(K)∩Eh,N

‖gE − g‖2
L2(E)

]
,

(67)
where

C
∗∗

= max
{
Ĉ1/2 s

1/2
K

(
1 +

1

C
1/2

�

K

)
, (C∗

�

K
)1/2 , Ĉ1/2 s

3/2
K h �

K λ̃1/2

+
( Ĉ

C �

K

)1/2

λ̂1/2 h �

Ks
3/2
K

}
,

CA, γmin, λ̂, λ̃, Ĉ, C �

K , h �

K , ρ �

K , νK and C∗
�

K
being defined as in Lemma 6.2.
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Proof. Let us introduce the auxiliary function

σE = sign � � gE − ∂uh

∂~nL,K
� ��� E � h

−1/2
E bA

E

associated with a generic edge E ∈ E(K) ∩ Eh,N . From Lemma 4.6, we have�
E � gE − ∂uh

∂~nL,K
� σE ds = ��� � gE − ∂uh

∂~nL,K
� ��� E ��� h−1/2

E

�
E

bA
E ds

= C∗�K
 � gE − ∂uh

∂~nL,K
� 

L2(E)
,

that is,  � gE − ∂uh

∂~nL,K
� 

L2(E)
=

1

C∗�K
�
E � gE − ∂uh

∂~nL,K
� σE ds. (68)

Results (60), (59), together with Lemma 4.6 yield the inequalities�
E � gE − ∂uh

∂~nL,K
� σE ds =

�
E � g − ∂uh

∂~nL,K
� σE ds +

�
E

(gE − g)σE ds

=

�
Ω

f σE d~x +

�
ΓN

g σE ds −
�
Ω �

2�
i,j=1

aij
∂uh

∂xj

∂σE

∂xi
� d~x −

�
K

f σE d~x

+

�
E

(gE − g)σE ds =

�
K �

2�
i,j=1

aij
∂eh

∂xj

∂σE

∂xi
� d~x −

�
K

f σE d~x +

�
E

(gE − g)σE ds

≤ CA ‖∇eh‖L2(K)‖∇σE‖L2(K) + ‖f‖L2(K)‖σE‖L2(K) + ‖gE − g‖L2(E)‖σE‖L2(E)

≤ CA ‖∇eh‖L2(K) h
−3/2
E �λ1/2 h �K sK �

�
K

bA
E d~x � 1/2

+ ‖f‖L2(K) h
−1/2
E �

�
K

bA
E d~x � 1/2

+ ‖gE − g‖L2(E) h
−1/2
E �

�
E

bA
E ds � 1/2

≤ �C1/2 s
1/2
K � CA �λ1/2 h �K sK h

−1/2
E ‖∇eh‖L2(K) + h

1/2
E ‖f‖L2(K) �

+(C∗�K)1/2 ‖gE − g‖L2(E) ≤ �C1/2 s
1/2
K � CA �λ1/2 h �K sK h

−1/2
E ‖∇eh‖L2(K)

+ h
1/2
E ‖f − fK‖L2(K) + h

1/2
E ‖fK‖L2(K) � + (C∗�K)1/2 ‖gE − g‖L2(E),

where the inclusion supp(σE) ⊂ K has been exploited too. Now, by applying results (62) and
(63) to the term ‖fK‖L2(K), we derive that�

E � gE − ∂uh

∂~nL,K
� σE ds ≤ C

∗∗ � CAh
−1/2
E ‖∇eh‖L2(K)

+ h
1/2
E ‖f − fK‖L2(K) + ‖gE − g‖L2(E) � .

Now we are in a position to bound the term ( III ) in (58). Moving from (68) and thanks to
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the geometrical relations (47) and (19), and results (31) and (33), we have

( III ) ≤
λ

1/2
1,K C

∗∗

C∗�K �
�

E∈E(K)∩Eh,N

� h−1/2
E

γ
1/2
min

CA |||eh|||K + h
1/2
E ‖f − fK‖L2(K)

+ ‖gE − g‖L2(E) � � wK(e∗h)

≤
2 λ

1/2
1,K C

∗∗

C∗�K � CA

(ρ �K γmin λ2,K)1/2
|||eh|||∆K

+ λ
1/2
1,K h

1/2�K ‖f − fK‖L2(K)

+
�

E∈E(K)∩Eh,N

‖gE − g‖L2(E) � wK(e∗h)

≤ 2 C
∗∗

C∗�K � s
1/2
K

(ρ �K γmin)1/2
CA |||eh|||∆K

+ λ1,K h
1/2�K ‖f − fK‖L2(K)
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1/2
1,K

�
E∈E(K)∩Eh,N

‖gE − g‖L2(E) � s
1/2
K

(1 + νK)

γ
1/2
min

|||eh|||∆K

=
2 C

∗∗

C∗�K
(1 + νK)

γ
1/2
min

� sK

(ρ �K γmin)1/2
CA |||eh|||2∆K

+
λ

3/2
1,K

λ
1/2
2,K

h
1/2�K |||eh|||∆K

‖f − fK‖L2(K)

+
λ1,K

λ
1/2
2,K

|||eh|||∆K

�
E∈E(K)∩Eh,N

‖gE − g‖L2(E) � .
Finally, employing Young’s inequality on the last two terms, we obtain

λ
3/2
1,K

λ
1/2
2,K

|||eh|||∆K
‖f − fK‖L2(K) ≤

γ
1/2
min

4
sK |||eh|||2∆K

+
λ2

1,K

γ
1/2
min

‖f − fK‖2
L2(K),

and
λ1,K

λ
1/2
2,K

|||eh|||∆K

�
E∈E(K)∩Eh,N

‖gE − g‖L2(E)

≤ γ
1/2
min

4
sK |||eh|||2∆K

+
2

γ
1/2
min

λ1,K

�
E∈E(K)∩Eh,N

‖gE − g‖2
L2(E),

respectively. These inequalities provide result (67). 	
Lemmas 6.1, 6.2 and 6.3 yield the desired efficiency estimate (24) for the local error

indicator ηK,T :

Proposition 6.1 Under the Assumption 4.1, it can be proved that

ηK,T ≤ C
[

|||eh|||2∆K
+ λ2

1,K

∑

T∈∆K

‖f − fT ‖2
L2(T )

+ λ1,K

∑

E∈E(K)∩Eh,N

‖gE − g‖2
L2(E)

]1/2

,

with C = C(K̂, N, C∆, νK , max
T∈∆K

sT , CA, γmin).
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Remark 6.1 (A cautionary tale) It is well known that recovery-based estimators,
though possessing several attractive features, such as, their ease of implementation, gen-
erality and ability to produce quite accurate estimators, also have some drawbacks. For
example, a kind of dangerous behavior is highlighted in [1], Section 4.7, and it is referred
to as a cautionary tale. The authors construct an example in which the recovery-based es-
timator produces an estimated error equal to zero, while the actual error can be arbitrarily
large. A similar phenomenon is also addressed in [36], Remark 1.7, where it is shown
how to construct a problem having uh = 0 as discrete solution, while ||u−uh||H1(Ω) 6= 0.
We point out that this situation is independent of the estimator being employed, e.g.
recovery-based or residual-based estimator. As long as the estimator uses only “finite”
or “lumped” information extracted from the numerical solution and/or from the data
of the problem, it will always be possible to devise cases when the estimators fail to be
reliable. In particular, in [36], the author’s conclusion is that this kind of situations will
always occur as long as it is not possible to evaluate exactly ||f ||L2(K), and that this
problem is cured by further refinements of the mesh. In other words, this phenomenon
is related to the so-called data oscillation, i.e. ||f −fK ||L2(K). This term may dominate
entirely the error estimate but it is usually not included in the definition of the local
error estimator, due to its uncomputable nature. In these cases, it is obvious that the
error estimator is not reliable. Conditions guaranteeing that the data oscillation is small
should be satisfied, then no phenomena such as the cautionary tale might occur.

7 Numerical algorithm and validation

In this section we first describe the numerical algorithm used to compute a numerical
solution satisfying a given tolerance, from an error estimator as (26). Then we validate
this algorithm on some numerical test cases.

7.1 Generation of the metric

The anisotropic information provided by the estimator (26) can be employed in two
different ways,

1. one just computes, on a given mesh, the quantity (26), thus obtaining an estimate
for the energy norm of the error;

2. one uses (26) in a predictive fashion, i.e. to construct a mesh satisfying an opti-
mality condition. Typical choices for this are

a) given a constraint on the maximum number of elements, find the mesh pro-
viding the most accurate numerical solution;

b) given a constraint on the accuracy of the numerical solution, find the mesh
with the least number of elements.

In what follows, we describe our approach, which fits into the 2.b) case.
Our numerical procedure is based on the definition of mesh metric (see [15]). In

particular, it is a standard way to endow the domain Ω with a metric, induced by a
symmetric positive definite tensor field M̃Ω : Ω → R

2
such that

M̃Ω = R̃T Λ̃−2R̃.
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The tensors Λ̃ = diag(λ̃1, λ̃2) and R̃T = [~̃r1
~̃r2] are positive diagonal and orthogonal,

respectively while the quantities ~̃ri and λ̃i provide the stretching directions and spacing
of the grid to be generated (see Fig. 1). The metric M̃Ω, however, is not known explicitly
(e.g. as a function of ~x = (x1, x2)), but is defined implicitly by the error estimator (26)
and the requirement b) above.

Suppose first that M̃Ω is given; then we show how the problem of constructing a mesh
associated with the metric, in some sense to be defined shortly, can be posed in terms
of a “matching condition”. With this aim, we recall that, for any given mesh Th, we can
define a piecewise constant metric M̃Th

, such that, M̃Tk
|K = M̃K = B−2

K = RT
KΛ−2

K RK ,
for any K ∈ Th, the matrices being the ones defined in Section 2. With respect to this
metric, any edge of triangle K has unitary length. Indeed, for any ~e ∈ E(K), we have

~eT M̃K~e = ~eT B−2
K ~e = ~eT B−1

K Z−T
K Z−1

K B−1
K ~e = ~eT M−T

K M−1
K ~e

= ||M−1
K ~e ||22 = ||~̂e ||22 = 1,

where ~̂e = T−1
K (~e ).

For practical reasons, we approximate the quantities λ̃1, λ̃2, ~̃r1, ~̃r2 defining M̃Ω by

piecewise constant functions over the triangulation Th, such that ~̃ri

∣∣
K

= ~̃ri,K , λ̃i

∣∣
K

=

λ̃i,K , for any K ∈ Th and with i = 1, 2.
Thus, we introduce the following matching criterion:

Definition 7.1 A mesh Th matches a given metric M̃Ω if, for any K ∈ Th,

M̃Ω

∣∣
K

= M̃Tk

∣∣
K

= M̃K ,

i.e. ~̃ri,K = ~ri,K and λ̃i,K = λi,K , for i = 1, 2.

The determination of M̃Ω and, in view of the definition above, of the corresponding
matching mesh, is usually carried out via an iterative procedure: starting from a given
mesh T k

h , playing the role of a background mesh, i.e., a grid where the information
concerning the new metric is stored and used to update the new mesh, by analyzing the
solution on T k

h , we seek for an optimal metric M̃k+1
Ω (piecewise constant over T k

h ) to

drive the generation of a better, adapted grid T k+1
h . At each step of this procedure, to

compute M̃k+1
Ω , we start from the definition of the global estimator (26), and then, for

convenience, we rewrite the local estimators ηK,T as

η2
K,T = |K|3/2ρ̃K(uh)

[
sK

(
~r T
1,KG̃K(e∗h)~r1,K

)
+

1

sK

(
~r T
2,KG̃K(e∗h)~r2,K

)]1/2

, (69)

where ρ̃K(uh) = ρK(uh)|K|−1/2 and G̃K(e∗h) = GK(e∗h)|K|−1 are the scaled residual
and matrix related to the reconstructed derivatives, respectively, the dependence on
k being dropped. This scaling is driven with the aim of making all the terms in the
right-hand side of (69) approximately independent of the measure of triangle K, at least
asymptotically (i.e., when the mesh is sufficiently fine), thus lumping this information
only in a multiplicative constant.

After scaling, we resort to the 2.b) requirement mentioned above, i.e. for a fixed
value of ηK,T , we minimize the number of triangles by maximizing |K|. This amounts
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to solving the following constrained minimization problem:





find sK and ~r1,K such that

I(sK , ~r1,K) = sK

(
~r T
1,K G̃K(e∗h)~r1,K

)
+

1

sK

(
~r T
2,K G̃K(e∗h)~r2,K

)
be minimized,

where sK ≥ 1, ~r1,K , ~r2,K ∈ R
2
, ‖~r1,K‖2 = ‖~r2,K‖2 = 1, and ~r1,K · ~r2,K = 0.

(70)
The solution to this problem is provided in the following

Proposition 7.1 The solution (s̃K , ~̃r1,K) of (70) is such that ~̃r1,K is parallel to the

eigenvector associated with the minimum eigenvalue of G̃K(e∗h) while

s̃K =

√√√√max(eig(G̃K(e∗h)))

min(eig(G̃K(e∗h)))
,

eig(G̃K(e∗h)) being the set of the eigenvalues of G̃K(e∗h).

Proof. Let us denote by (~v1,K , σ1,K) and (~v2,K , σ2,K) the two couples of orthonormal

eigenvectors and eigenvalues of the symmetric positive semi-definite matrix �GK(e∗h), where,
without loss of generality, we assume σ1,K ≥ σ2,K(> 0). Let us expand ~r1,K and ~r2,K as

~r1,K = a1 ~v1,K + a2 ~v2,K , ~r2,K = −a2 ~v1,K + a1 ~v2,K ,

where a2
1 + a2

2 = 1. This gives,

~r T
1,K �GK(e∗h)~r1,K = σ1,K a2

1 + σ2,K a2
2, ~r T

2,K �GK(e∗h)~r2,K = σ2,K a2
1 + σ1,K a2

2.

Noticing that (~r T
1,K �GK(e∗h)~r1,K)+(~r T

2,K �GK(e∗h)~r2,K) = σ1,K +σ2,K , we are led to minimizing
the quantity

I(sK , ~r1,K) = � sK − 1

sK
� ~r T

1,K �GK(e∗h)~r1,K +
σ1,K + σ2,K

sK

with respect to ~r1,K and sK . First notice that, for any given sK > 1, the above expression
is minimized when ~r T

1,K �GK(e∗h)~r1,K is minimum. This occurs when the Rayleigh quotient

~r T
1,K �GK(e∗h)~r1,K is equal to the minimum eigenvalue of �GK(e∗h), i.e., when ~r T

1,K �GK(e∗h)~r1,K =
σ2,K and ~r1,K is parallel to the eigenvector ~v2,K . When this is the case, it also holds
~r T
2,K �GK(e∗h)~r2,K = σ1,K and ~r2,K is parallel to ~v1,K . In turn, the minimization with respect

to sK provides us with the optimal value of sK

�sK = � σ1,K

σ2,K
≥ 1.

Then we consider some particular cases:

a) when sK = 1, I(1, ~r1,K) = σ1,K + σ2,K , independently of ~r1,K , which can thus be chosen
arbitrarily;

b) when σ2,K = 0 we have to limit �sK to a suitable user-defined maximum value;

c) when σ1,K = σ2,K , all the Rayleigh quotients are equal to the common eigenvalue of�GK(e∗h). In this case the solution of the minimization problem provides us with an

arbitrary vector ~�r1,K and with �sK = 1, consistently with a). This corresponds to the
isotropic case of an unstretched triangle.
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To define completely the metric we are left with computing the values of λ̃1,K and

λ̃2,K . For this purpose we use the equidistribution of the error. More precisely, since we
can only act on the local estimators, we impose that ηK,T = τ , for any K ∈ Th, where τ
is a given tolerance. By combining the result of Proposition 7.1 with the equidistribution
of the error, we single out the values of λ̃1,K and λ̃2,K as the solutions of the system





λ̃1,K

λ̃2,K

= s̃K ≡ q,

λ̃1,K λ̃2,K =




τ4

|K̂|3 ρ̃ 2
K(uh)

(
s̃K σ2,K +

σ1,K

s̃K

)




1/3

≡ p,

from which it follows that λ̃1,K =
√

pq, λ̃2,K =
√

p/q.

Finally, we recall that the global metric M̃k+1
Ω is obtained by letting ~̃ri|K = ~̃ri,K and

λ̃i|K = λ̃i,K , with i = 1, 2. Once the metric has been computed, the new mesh is built
by a metric-driven mesh generator, e.g. BAMG [19], which receives as input the metric

M̃k+1
Ω and returns the mesh T k+1

h satisfying (within a certain tolerance) the matching
condition.

7.2 Numerical Assessment

The procedure provided in Section 7.1 to get an adapted mesh satisfying criterion 2.b)
together with an error equidistribution approach, is validated in this section. Moreover,
to assess the robustness of the proposed anisotropic error estimator we study its behavior
on some a priori chosen non-optimal grids. A comparison with the standard ZZ and the
residual-based error estimators is also provided.

7.2.1 The first test case

We solve the Poisson problem in Ω = (0, 1)2 with homogeneous Dirichlet boundary
conditions, namely we choose aij = δij , γ = 0, and ΓN = ∅ in (9), with δij the
Kronecker symbol. The forcing term f is chosen such that the exact solution is given
by

u = 4
(
1 − e−100x1 − x1(1 − e−100)

)
x2 (1 − x2).

The solution u exhibits an exponential layer along the boundary x1 = 0, with an initial
steepness of 100. The presence of the boundary layer justifies the use of an anisotropic
mesh adaption technique.
Moving from the error estimator (26) and from an initial uniform mesh of about 1000
elements, we apply the procedure in Section 7.1 to get a new metric guaranteeing a pre-
scribed accuracy τ = 10−3 of the approximate solution uh and an error equidistribution
on the mesh elements, and the corresponding adapted mesh. A priori one would expect
an adapted grid with the triangles stretched along the boundary layer to capture the
directional features of the solution at hand. This is confirmed by Fig. 4 where the fourth
adapted mesh, of about 5000 elements, is shown. The orientation and deformation of
the mesh elements (shortest edges oriented across the direction of maximal variation of
the solution) guarantee a reduction of the number of triangles, that is of the computa-
tional cost associated with the approximation of the problem at hand. A zoom of the
mesh in correspondence with the boundary layer is also provided on the right of Fig. 4.
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Figure 4: First test case: fourth adapted mesh obtained via the anisotropic ZZ error
estimator (26).

In Fig. 5 we provide an adapted mesh obtained moving from the same initial mesh,
but using another error estimator [12]. In more detail, we exploit an anisotropic coun-
terpart of the dual-based error analysis in [4]. Also in this case, by suitably choosing
the adjoint problem to be solved, we control the energy norm of the discretization er-
ror. By comparing the meshes in Figs. 4 and 5, we note that the distribution of the
triangles is very similar. However, the grid in Fig. 5 has less elements (about 4000), the
boundary layer being captured more sharply (compare the thickness of the refined areas
near the side x1 = 0). This sharpness, though, is balanced by the higher computational
cost characterizing this second approach, due to the additional resolution of the dual
problem.
We remark that a control of linear functionals of the discretization error, identifying
physically meaningful quantities, is allowed by the dual-based analysis too. This ap-
proach yields meshes characterized by a distribution of triangles varying according to
the quantity we are interested in. We refer to [12] for an example of such a technique.

To assess the robustness of the error estimator (26), let us study its behavior on a
priori chosen meshes, following the criterion 1. in Section 7.1.
First, we consider a series of stretched meshes parametrized by a value k such that,
starting from a uniform 10×10 mesh of the domain Ω, the new mesh is obtained by the
transformation

xnew
1 =

exp (kxini
1 ) − 1

exp (k) − 1
, (71)

where xini
1 takes on the values of the horizontal coordinates of the nodes of the initial

uniform grid. Notice that the meshes generated by the criterion (71) are correctly
oriented (though not necessarily of the correct size), the triangles being stretched along
the x2-axis and gathered in correspondence with the side x1 = 0.

Table 1 collects the most meaningful quantities related to this assessment. In par-
ticular, for the current mesh, from left to right, we find:

• the value k;

• the maximum and minimum stretching factor sK ;

• the total number Nv of vertices;
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Figure 5: First test case: fourth adapted mesh obtained via an anisotropic dual-based
approach.

• the value ν =
||GZZuh −∇u||L2(Ω)

||∇uh −∇u||L2(Ω)
, related to the condition (27);

• the energy norm |||eh||| of the discretization error;

• the effectivity index associated with the standard isotropic ZZ error estimator

θZZ =
||GZZuh −∇uh||L2(Ω)

|||eh|||
;

• the effectivity index associated with the standard isotropic residual-based error
estimator

θRes =

( ∑

K∈Th

(
h2

K ||rK(uh)||2L2(K) +
hK

2
||RK(uh)||2L2(K)

))1/2

|||eh|||
, (72)

rK(uh) and RK(uh) being defined as in (14)-(15);

• the effectivity index associated with the anisotropic error estimator (26)

θA =
ηT

|||eh|||
.

Notice that the total number of mesh vertices is invariant, i.e. it does not depend
on k.
Moreover, until the maximum stretching factor is about 26 (i.e. k ≤ 5), the behavior of
the energy norm of the discretization error as well as of the effectivity indexes θZZ and
θA is the expected one, |||eh||| diminishing and the indexes converging to constant values
(about 1 and 4, respectively). On the other hand, the effectivity index θres associated
with the residual-based error estimator gets larger and larger.
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Table 1: First test case: values associated with the meshes generated by the criterion
(71)

k maxK sK – minK sK Nv ν |||eh||| θZZ θres θA

1 1.73 – 1.73 121 0.9961 8.8780 0.0772 1.0416 0.3635

2.5 4.62 – 1.75 121 0.9057 3.4868 0.5470 12.7906 2.3530

5 26.2 – 1.75 121 0.7328 1.2096 0.9760 51.0799 4.3298

10 1480 – 1.77 121 0.8596 1.4224 0.8812 46.9202 4.0841

20 8.76 · 106 – 1.77 121 1.0568 2.7707 0.5798 23.1898 2.9348

30 6.46 · 1010
– 2.60 121 0.9602 4.5719 0.3983 11.5777 2.8185

40 5.10 · 1014
– 6.47 121 1.0206 5.4212 0.3636 11.1959 3.0221

For 10 ≤ k ≤ 40, that is for extremely high values of the maximum stretching factor, a
different and unexpected trend is shown by the quantities |||eh|||, θZZ and θA, probably
due to the lack of a sufficient number of mesh nodes along the x1 axis, far from the
boundary layer, or to the maximum very large aspect ratio, up to 1014. As for the
quantity ν in the fourth column, we note that it is below the value 1, except for two
cases only.

The same quantities collected in Table 1 are computed on a second series of stretched
grids, obtained by refining the initial grid along the wrong direction, i.e. the x2 axis
and near the top side of the domain, by the relation

xnew
2 =

exp (kxini
2 ) − 1

exp (k) − 1
, (73)

where xini
2 takes on the values of the vertical coordinates of the nodes of the initial

uniform grid. This choice aims at comparing the error estimator (26) with the standard
ZZ and residual-based estimators, in a very unfavorable situation. The results are
summarized in Table 2.

Table 2: First test case: values associated with the meshes generated by the criterion
(73)

k maxK sK – minK sK Nv ν |||eh||| θ
ZZ

θ
res

θ
A

2.5 4.62 – 1.75 121 0.9995 8.9567 0.0781 1.2829 0.3652

5 26.2 – 1.75 121 0.9944 9.1328 0.0781 1.8650 0.3725

10 1480 – 1.77 121 0.9925 10.0010 0.0600 3.1409 0.3244

20 8.76 · 106 – 1.77 121 0.9957 11.8100 0.0314 4.7254 0.2265

30 6.46 · 1010 – 2.60 121 0.9976 12.5180 0.0205 5.3389 0.1912

40 5.10 · 1014 – 6.47 121 0.9987 12.7495 0.0138 5.5666 0.1686

The values of the energy norm |||eh||| are large and increase with k, due to the wrong
choice of the meshes, while the effectivity indexes θZZ and θA get smaller and smaller.
This testifies that, for the Poisson problem at hand, the isotropic ZZ and the anisotropic
error estimators underestimate the true error on such kind of grids. On the other hand,
the effectivity index (72) seems to be stabilizing about the value 5.5. In this case, the
quantity ν is less than 1 but very close to it, probably again due to the unfavorable
choice of the mesh.

Finally, we evaluate the three error estimators above by approximating the Poisson
problem at hand on structured grids obtained by subdividing the horizontal and vertical
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sides of the domain by N1 and N2 uniform subintervals, respectively, and on criss-cross
type meshes characterized by N1 = N2 uniform subdivisions of all of the boundary edges.
For both the structured and criss-cross meshes, the maximum and minimum values of
the stretching factor sK are equal to 1.73 and 1, respectively.
The results are collected in Tables 3 and 4, respectively.

Table 3: First test case: values associated with the structured meshes

N1− N2 Nv ν |||eh||| θ
ZZ

θ
res

θ
A

20 – 3 84 0.9670 5.9649 0.3105 13.7252 1.5044

40 – 6 287 0.9093 3.5215 0.5428 20.6935 2.4027

80 – 12 1053 0.8718 1.8925 0.7636 24.9598 3.3841

160 – 24 4025 0.7865 0.9666 0.9056 27.6362 4.1149

In both cases, the energy norm of the discretization error reduces as the grid is
refined, while the effectivity indexes θZZ and θA get near the values 1 and 4, respectively.
On the contrary, the estimates of the norm |||eh||| predicted by the residual-based error
estimator are not reliable, as the large values of θres suggest. In both cases, the values
of ν are always less than 1 (except for the first mesh in Table 4), probably due to the
regularity of the meshes.

Table 4: First test case: values associated with the criss-cross meshes

N1 = N2 Nv ν |||eh||| θ
ZZ

θ
res

θ
A

4 41 1.0024 10.1142 0.0504 0.8272 0.2427

8 145 0.9786 6.5950 0.1920 3.2989 0.8779

16 545 0.9226 4.0655 0.4307 5.9274 1.8749

32 2113 0.8935 2.2421 0.6820 7.9493 2.9682

64 8321 0.8369 1.1542 0.8639 9.4810 3.8535

7.2.2 The second test case

We are still concerned with the solution of the Poisson problem in Ω = (0, 1)2 with
homogeneous Dirichlet boundary conditions. The choice f = −20 sin(6 π x2)(−1 −
18 π2 x1 + 18 π2 x2

1) is made for the forcing term, so that the solution u is given by

u = 10 x1 (1 − x1) sin(6 π x2).

First, we solve the problem on a quasi-uniform mesh with average size 1/20. Then ac-
cording to the criterion 2.b) cited in Section 7.1, we exploit the anisotropic information
provided by the error estimator (26) to get an adapted mesh with an almost equidis-
tributed error per element equal to τ = 10−3. This goal is reached after four iterations.
The sequence of the four adapted grids is collected in Fig. 6 (left-right top-bottom). It
appears that the directional features of the solution u match the grids. The six more
refined horizontal zones correspond to the regions of Ω where the maxima and minima
of u are reached.
Fig. 7 shows the discrete solution uh computed on the third adapted mesh. The two
plots refer to different view points.
The same quantities considered in Tables 1-4 are now computed on the initial and on the

35



four adapted meshes, together with the total number Nt of mesh triangles. The corre-
sponding values are gathered in Table 5. It can be noted that the anisotropic estimator
is very little sensitive to the variations of the stretching factors. It is remarkable also
that, in this example, the standard ZZ error estimator has effectivity indexes very close
to one. However it is not straightforward to extract some anisotropic information from
this estimator to use in a predictive fashion. Finally, the residual-based error estimator
turns out again not to be a reliable quantity, the corresponding effectivity index θres

having an increasing trend. Notice that the sequence of the values of ν is decreasing as
the adaptation procedure progresses, assessing, in this case, the good properties of the
ZZ recovery procedure.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 6: Second test case: sequence of the adapted meshes provided by the anisotropic
ZZ error estimator (26) (left-right top-bottom).
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Figure 7: Second test case: discrete solution computed on the third adapted mesh.

Table 5: Second test case: values associated with the initial and the four adapted meshes

maxK sK – minK sK Nv Nt ν |||eh||| θZZ θres θA

2.32 – 1.01 665 1248 0.7083 5.3290 1.0504 7.69907 4.8269

15.6 – 1.03 586 1128 0.6175 3.5560 1.0232 13.4678 4.9417

16.0 – 1.01 1196 2307 0.4142 2.0337 1.0076 19.2115 4.9277

18.4 – 1.02 2330 4533 0.3678 1.3077 1.0004 23.5636 4.9628

21.4 – 1.02 3298 6416 0.3390 1.0928 0.9991 22.8249 4.9007

7.2.3 The third test case

As last test case we still deal with the solution of the Poisson problem in Ω = (0, 1)2

completed with homogeneous Dirichlet boundary conditions. Now the forcing term f is
chosen such that the solution is

u = sin(aπx1) sin(aπx2), (74)

with a chosen equal to 1, 2 and 4. According to the criterion 1. in Section 7.1, we exploit
such a test case to compare again the robustness of the anisotropic error estimator (26)
with that of the standard ZZ and of the residual-based estimators. We use structured
grids obtained by subdividing the horizontal and the vertical sides of the domain by N1

and N2 uniform subintervals, respectively.

Table 6: Third test case: values associated with structured meshes and for the choice
a = 1 in (74)

N1 − N2 Nv ν |||eh||| θZZ θres θA

2 – 2 9 1.0785 1.5352 0.6178 6.4211 2.5899

4 – 4 25 0.8769 0.8427 0.9380 6.8819 3.8000

8 – 8 81 0.5940 0.4323 1.0064 7.1731 4.2097

16 – 16 289 0.3718 0.2176 1.0087 7.2769 4.3122

32 – 32 1089 0.2338 0.1090 1.0048 7.3127 4.3374

64 – 64 4225 0.1521 0.0545 1.0024 7.3260 4.3486
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Table 7: Third test case: values associated with structured meshes and for the choice
a = 2 in (74)

N1− N2 Nv ν |||eh||| θZZ θres θA

2 – 2 9 1.0582 4.6980 0.3748 10.0847 2.5544

4 – 4 25 1.1147 3.0140 0.6251 6.4844 2.8587

8 – 8 81 0.9135 1.6807 0.9526 6.9236 4.0188

16 – 16 289 0.5767 0.8641 1.0070 7.2034 4.2996

32 – 32 1089 0.3342 0.4351 1.0061 7.2935 4.3525

64 – 64 4225 0.1955 0.2180 1.0029 7.3212 4.3564

Table 8: Third test case: values associated with structured meshes and for the choice
a = 4 in (74)

N1− N2 Nv ν |||eh||| θ
ZZ

θ
res

θ
A

2 – 2 9 0.4811 2.9609 0.7136 7.8888 3.1110

4 – 4 25 1.1058 9.0507 0.5894 10.8892 3.5873

8 – 8 81 1.1328 6.0441 0.6266 6.5104 2.9673

16 – 16 289 0.9326 3.3556 0.9585 6.9436 4.1318

32 – 32 1089 0.5663 1.7274 1.0064 7.2183 4.3449

64 – 64 4225 0.3126 0.8702 1.0044 7.3018 4.3726

The results for the three different values of a are collected in Tables 6-8. Besides a
reduction of the norm |||eh||| of the discretization error, we notice that the values of the
three effectivity indexes θZZ , θres and θA stabilize around 1, 7.3 and 4.3, respectively.
This trend states that, for this test case, except for a suitable scaling factor, the three
error estimators provide reliable values for the energy norm of the discretization error,
in the presence of the structured meshes chosen above. Finally, we note that, in all
the three cases, the quantity ν is small, except for few cases, probably because of the
regularity of the meshes and the smoothness of the solutions.
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